2026/02/04 00:05 1/19 Script bash : variables, arguments, parametres

Script bash : variables, arguments,
parametres

Création, suppression, exportation de variables

Le nom d'une variable est un simple pointeur vers I'emplacement mémoire ou sont conservées les
données qu'elle contient.

Les variables qu'on crée dans un script (ou dans le terminal) sont localisées dans ce script (ou a
I'ouverture d'un terminal) c'est-a-dire qu'elles ne sont utilisables que lorsqu'on exécute son script, (ou
que I'on appelle la valeur d'une variable qu'on vient de déclarer dans un terminal). Et il s'agit du script
d'un utilisateur, il faut les distinguer des variables de substitution prédéfinies et des variables
d'environnement prédéfinies.

Mais comment enregistrer une valeur en mémoire ?

C'est par exemple, |'affectation d'une valeur au nom d'une variable qui va permettre d'enregistrer en
mémoire cette variable avec sa valeur

Avant tout prenez bien conscience que la déclaration d'une variable n'est pas confinée
au script, mais qu'il est possible de déclarer une variable dans le shell courant (dans le
terminal). Voir absolument : détail sur le caractere $.

Voyons d'abord comment créer une variable de cette maniere et comment utiliser sa

o~
o=
-

valeur.

Affectation directe :

La déclaration d'une variable se fait lors de son affectation, c'est-a-dire lorsqu'on assigne au nom de
la variable une valeur au moyen du caractere = (sans espace avant et apres).

#!/bin/bash
nom de la variable=ValeurDelLaVariable

La valeur ValeurDelLaVariable a été mémorisée.

$nom_de_la_variable

Pour “utiliser” une variable, on se sert de sa valeur : il faut donc appeler sa valeur et cela se fait avec
le caractere spécial $ accolé au nom de la variable :

script

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shells:la-page-man-bash-les-caracteres-speciaux#caracteres-des-variables-de-substitution-predefinies
https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shells:la-page-man-bash-les-caracteres-speciaux#appel-de-la-valeur-des-variables-d-environnement-predefinies
https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shells:la-page-man-bash-les-caracteres-speciaux#appel-de-la-valeur-des-variables-d-environnement-predefinies
https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shells:la-page-man-bash-les-caracteres-speciaux#details-sur-le-caractere
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=1

Last update: 2023/01/27 16:08 start:raspberry:bash4 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

#!/bin/bash

nx fichier=les-fonctions
touch ~/$nx fichier

ls -la ~/$nx fichier

Les programmes (ou commandes) touch et s ont utilisé la valeur de
la fonction nommeée nx_fichier, dont la valeur correspond a la chaine

de caracteres les fonctions.

Une variable n'est pas typée

La valeur d'une variable peut étre un nombre, un ou plusieurs caracteres, du texte espacé, une
commande, la valeur d'une variable.

script

#!/bin/bash

varl=a

var2=texte

var3="texte avec espaces"

var4=55

varb5=$varl #ici on affecte a la variable var5, la
valeur de la variable varl

vare=$0 #ici on affecte a la variable var6, la

valeur de la variable pré-définie $0 (1)
echo -e "valeur de varl: $varl\nvaleur de var2: $var2\nvaleur de var3:
$var3\nvaleur de var3: $vard\nvaleur de var5: $var5\nvar6: $var6"

(1) $0 a pour valeur pré-définie le nom du programme

valeur de varl: a

valeur de var2: texte

valeur de var3: texte avec espaces

valeur de var3: 55

valeur de var5: a

var6: /home/hypathie/MesScripts/mon-script

Déclaration de plusieurs variables sur une ligne

On peut déclarer plusieurs variables sur une méme ligne, il suffit pour cela de mettre un espace entre
chacune :

script

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 00:05

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=2
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=4

2026/02/04 00:05 3/19 Script bash : variables, arguments, parametres

#!/bin/bash
-0 posix
varl=a var2=texte var3="texte avec espaces" var4= varb5=$varl
vare=$0
bin/echo -e "valeur de varl: $varl\nvaleur de var2: $var2\nvaleur de
var3: $var3\nvaleur de var3: $vard4\nvaleur de var5: $var5\nvar6: $varé6"
méme retour que précédemment

Le nom d'une variable peut étre composé :

e par des lettres de a-z ou de A-Z ;
e par des chiffres de 0-9 .
e || peut contenir un underscore .

@ Mais il ne doit jamais :

commencer par un nombre ;

e par underscore ;

un caractere spécial ;

ni étre un mélange de lettres minuscules et majuscules.

« Voir I'exemple 4.3. Affectation de variable, basique et plus élaborée
e Voir Variable nulle et variable non-déclarée dans I'exemple

Pour concaténer les valeurs deux variables :

script

#!/bin/bash
'\) varl=lala

var2=1i
var3=$varls$var2
echo $var3

Affectation par la lecture : read
On peut créer des variables au moyen de commandes, comme par exemple la commande read qui
est une commande interne (ou primitive) au shell.

e Syntaxe:

read nom de la variable

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

http://abs.traduc.org/abs-fr/ch04s02.html
http://abs.traduc.org/abs-fr/ch04s03.html
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=5

Last update: 2023/01/27 16:08 start:raspberry:bash4 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

 La valeur est enregistrée par I'utilisateur sur I'entrée standard (i.e. ce qu'on écrit a l'invite de
commande).

e Le nom de la variable s'écrit juste apres read, ce n'est qu'un pointeur vers la valeur que vous
avez rentrée.

Par exemple dans un script :

script
#!/bin/bash
echo "Bonjour : qui étes-vous ?"

read nom
echo "Enchanté $nom !"

De méme dans le terminal on peut tout a fait entrer tour a tour chacune des lignes de

v
o=~
-

ce script, essayez !

e L'option -p permet d'insérer un message avant |'attente de la valeur que I'utilisateur doit entrer.

script
#!/bin/bash

read -p "entrez votre prénom: " prenom
echo "bonjour $prenom !"

Ici prenom est le nom de la variable, et sa valeur est entrée par I'utilisateur depuis le terminal.
La aussi ces deux commandes peuvent étre entrées dans le terminal.

e read permet de déclarer plusieurs variables successivement (dans terminal ou script):

read -p "entrez votre nom et prénom: " nom prenom

retour de la commande

entrez votre nom et prénom:

On entre par exemple les deux chaines de caracteres, debian et facile, puis on peut récupérer
la valeur de chacune des deux variables nom et prenom.

echo $prenom $nom

retour de la commande

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 00:05

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=7
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=8
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=10
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=12

2026/02/04 00:05 5/19 Script bash : variables, arguments, parametres

facile debian

Mais dans un script c'est plus rapide ! ~~

e read et variable non-déclarée

script

#!/bin/bash
read -p "entrez votre nom d'utilisateur:
echo "bonjour $USER !"

Ci-dessus, on n'a pas mis le nom de la variable, parce qu'on ne cherchera pas

a utiliser la valeur de cette variable. Cela permet au programme de se poursuivre.
Quand on entre dans le terminal la réponse attendu par read, le retour de la
commande est 0, donc elle est considérée comme exécutée, et le shell passe a
I'exécution de la commande suivante.

Quelques options utiles de la commande read.
e -p: afficher un message
e -n: limiter le nombre de caracteres

e -t : limiter le temps autorisé pour saisir un message

o
e -5 : ne pas afficher le texte saisi

On peut utiliser plusieurs options.
Par exemple:

read -p "entrez votre année de naissance (deux derniers
chiffres): " -n 2 annee

Modification de la valeur d'une variable

Pour modifier la valeur d'une variable, il suffit de I'affecter d'une nouvelle valeur.

script

#!/bin/bash
varl=bonjour
echo $varl
varl=

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=13
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=15

Last update: 2023/01/27 16:08 start:raspberry:bash4 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

echo $varl
varl=

echo $varl
varl=Bonjour
echo $varl

bonjour
23

Bonjour

Protection de variable : "readonly”

On protege une variable avec la commande readonly. La variable devient alors une variable en
lecture seule. Cela lui donne la caractéristique d'étre figée : on ne peut plus alors, au cours du méme
script, réaffectée par une nouvelle valeur une variable en lecture seule, y compris si cette variable a
été déclarée nulle.

script

#!/bin/bash
varl=toto

varl=

echo "$varl $var2"
readonly varl var2
varl=titi
var2=titi

unset varl var2

toto

ligne6: varl : variable en lecture seule

ligne7: var2 : variable en lecture seule

ligne 8 : unset: varl : « unset » impossible : variable est en lecture
seule

ligne 8 : unset: var2 : « unset » impossible : variable est en lecture
seule

Suppression de variable : unset

Soit le script “essai.sh” : passons a ce script I'argument vous

script essai.sh

#!/bin/bash
varl=coucou

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 00:05

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=17
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=19

2026/02/04 00:05 7/19 Script bash : variables, arguments, parametres
var2=%1
echo "$varl $var2"
unset var2
echo "$varl $var2"
varl=$1
var2=vous
echo "$varl $var2"
unset var2
echo "$varl $var2"
script essai.sh
#!/bin/bash
varl=yep
var2=coucou
echo "$varl $var2"
unset var2
echo "$varl $var2"

echo

echo "mais pour un parametre

echo " "
varl=yep
var2=coucou
var3=$1

echo "$varl $var2 $var3"

unset var2 var3

echo "$varl $var2 $var3"

var2l=
var3=51

echo "$varl $var2 $var3"

yep coucou

yep

mais pour un parametre

yep coucou

yep
yep

Exportation de la valeur d'une variable

Définition

Exporter la valeur d'une variable signifie que I'on envoie a un processus fils, la valeur d'une variable
depuis un processus pere.

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=20

Last update: 2023/01/27 16:08 start:raspberry:bash4 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

Un processus, c'est un programme en cours d'exécution, mais aussi son

environnement d'exécution.
Ainsi le shell qui lance un script est le processus pére du script lancé. Sur la notion de
processus voir Notion de processus

Exemple

On peut exporter depuis le terminal, une valeur pour remplacer provisoirement une variable d'un
script.

Coucou="Bonjour"
On déclare la variable Coucou, affectée de la valeur Bonjour depuis le terminal.
Le shell courant I'a enregistré.

echo 'echo "Coucou=$Coucou"' > test.sh

La, on crée le fichier “test.sh” contenant la ligne : echo “Coucou=$Coucou”

Il contient une variable, de méme nom que celle, précédemment déclarée et affectée de la valeur
Bonjour depuis le terminal.

chmod u+x test.sh

Le fichier “test.sh” devient exécutable pour l'utilisateur principal.
export Coucou

On exporte la variable Coucou®”.

Attention, ce n'est jamais la valeur d'une variable que I'on exporte !

./test.sh

retour de la commande

Coucou="Bonjour"

[l faut que le script déclare une variable de méme nom (Coucou=) ; qu'il récupere celle exportée
depuis le terminal ($Coucou) ; et bien évidemment, qu'il affiche (echo) tout cela :(echo
“Coucou=$Coucou”).

Dans ces conditions, la valeur de la variable Coucou une fois exportée, peut valoir pour la variable
du script “test.sh” qui est le processus fils du shell courant.

Mais une fois le terminal réinitialisé, si on lance ./test.sh, ce script est le

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 00:05

https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shells:bash-les-differents-caracteres-speciaux&&#notion-de-processus
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=27

2026/02/04 00:05 9/19 Script bash : variables, arguments, parametres

processus fils d'un “nouveau” processus pere (= le nouveau terminal) qui n'a plus
en mémoire la valeur Bonjour pour la variable nulle Coucou du script.
Et dans ce cas :

./test.sh

retour de la commande

Coucou=

Pour réinitialiser son terminal,
il suffit de fermer et de le ré-ouvrir
ou de recharger son fichier ~/.bashrc :

source ~/.bashrc

ou

~/ .bashrc

Quand les valeurs sont des parametres

Le terme parametre de position, renvoie a I'appel de la valeur des parametres (ou

.J On peut considérer que les termes parametre et argument sont synonymes.
arguments) passés au script.

Utiliser des parametres de positions

Lorsqu'on ajoute un argument au script avant son exécution, on peut alors récupérer la valeur de ce
parametre.

e Pour récupérer chaque parametre : $1; $2 ; $3 etc.
e Pour récupérer tous les parametres : $@
e Pour récupérer le nombre de parameétres passés au script : $#

e Pour récupérer la derniere commande : $?

(Par défaut, 0 quand tout s'est bien passé, 1 quand il y a une erreur, sinon on fait exit xx, $? affiche
XX)

EXEMPLES : soit le script “essai.sh”

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=29

Last update: 2023/01/27 16:08 start:raspberry:bash4 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

script essai.sh

#!/bin/bash
var=Bonjour

echo $var

echo "$1"

echo "$2"

echo "$3"

echo "ou le parametre 1 est: $1, le deuxieme est: $2, le troisieme est
$3"

echo " "

echo "tous les parametres $@"

./essai.sh a b c

retour de la commande

Bonjour # on peut récupérer une valeur (ou des valeurs) déclarée(s) et
les parametres de position

a

b

¢

ou le parametre 1 est: a, le deuxieme est: b, le troisieme est : c

tous les paramétres a b c

e Tous les arguments passés au scripts $* et $@ sont synonymes

script

#!/bin/bash
echo $1
echo §$*
echo $

echo $#

./essai.sh bonjour a tous

retour de la commande

bonjour
bonjour a tous
bonjour a tous
3

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 00:05

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=32
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=34
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=35
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=37

2026/02/04 00:05 11/19 Script bash : variables, arguments, parametres

e La de méme pour $* et $@ :

script

#!/bin/bash
echo $1
echo $*
echo $

echo $#

./essai.sh "bonjour a tous"

retour de la commande

bonjour a tous
bonjour a tous
bonjour a tous
1

e Mais avec la commande set qui modifie provisoirement les parameétres :

Pour plus de détails sur la commande set voir : script-bash-detail-sur-les-parametres-et-les-boucles

script essai.sh

#!/bin/bash
"bonjour a tous"
echo $*
echo $
echo $1
echo $#

./essai.sh

retour de la commande

bonjour a tous
bonjour a tous
bonjour a tous
1

e Ou encore :

script essai.sh

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=38
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=40
https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shells:script-bash-detail-sur-les-parametres-et-les-boucles&&#syntaxe-de-set
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=41
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=43
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=44

Last update: 2023/01/27 16:08 start:raspberry:bash4 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

#!/bin/bash
bonjour a tous

echo $*

echo $

echo $1

echo $#

./essai.sh

retour de la commande

bonjour a tous
bonjour a tous
bonjour

3

script essai.sh

#! /bin/bash

Nombre arguments attendus=1

$# -ne $Nombre arguments attendus |;

echo "Le nombre d'arguments est invalide : $#"

echo "Nombre argument attendu : ${Nombre_arguments_attendus} "
#if ["$#" -ne 1]; then
echo "Le nombre d'arguments est invalide"

#11

echo "Script Started !"

./essai.sh

retour de la commande

Script Started !

Récupérer la longueur d'une valeur de variable

 Pour obtenir la longueur d'une chaine stockée dans une variable, on écrit ${#VAR}

Exemples :

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 00:05

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=46
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=47
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=49

2026/02/04 00:05 13/19 Script bash : variables, arguments, parametres

script

#!/bin/bash
var="j'aime debian-facile"
echo ${#var}

e Pour récupérer la longueur d'un parametre de position :

Fix Mel

Substitutions de commande

Utilisation

Permet de se servir de la sortie d'une commande dans un autre contexte pour ;

1. affecter cette sortie a une variable ;
2. utiliser cette sortie comme argument d'une autre commande
3. etc.

Deux syntaxes :

“commande’
ou

$(commande)

Substitution simple : $(commande)

script
#!/bin/bash

dir=$(pwd
echo "mon répertoire est : $dir"

mon répertoire est : /home/hypathie

e plusieurs commandes:

script

#!1/bin/bash

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=50
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=53
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=55

Last update: 2023/01/27 16:08 start:raspberry:bash4 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

echo $(pwd ; 1ls

Imbrication de commandes : $(cmd $(cmd))
echo $(1s $(pwd)/Documents

Imbrication avec ''set"

script

#!/bin/bash

$(pwd ; whoami
echo "$1 : $2"
echo $#

Ou

script

#!/bin/bash
-- $(1ls -1 $(pwd)/.bashrc
echo $*

Typologie des variables

Comme nous l'avons vu on peut affecter une variable par différents types de valeurs ; des chaines de
caracteres, des nombres, des valeurs d'autres variables, des substitutions de commandes.

On dit pour cela qu'en bash les variables ne sont pas typées.

Mais il peut étre intéressant de typer une variable. Pour ce faire, il faut utiliser des commandes
internes a bash qui permettent de déclarer une variable typée.

declare et typeset

commandes |options
declare/typeset|- r : lecture seule
declare/typeset|-1i : entier
declare/typeset|-a tableau (array)
declare/typeset|- f : fonction(s)
declare/typeset|-x : export
declare/typeset|-x : var=$valeur

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 00:05

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=57
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=58

2026/02/04 00:05 15/19 Script bash : variables, arguments, parametres

Voir : Guide avancé d'écriture des scripts Bash: 9.4. Typer des variables : declare ou typeset

Remarques sur la commande "declare" et les calculs

Méthode non POSIX

e La valeur d'une variable peut une expression arithmétique, pour initialiser une
variable de type entier on utilise I'option -1i de la commande declare :
declare -i nom[=expression] nom[=expression] ..

script
#1/bin/bash
declare -i x=
echo $x

retour

70
@ e Pour que la valeur d'une variable ne soit pas accidentellement modifier, il faut
ajouter l'attribut - r.

script

#!/bin/bash
declare -ir a=
declare -ir b=5+
echo $((%$a+$b

80

Méthode POSIX : Les commandes let et ((...)) permettent de typer les
variables pour effectuer des calculs sur les variables (synonyme de declare -1i).
Variables numériques et calculs

Les variables typées pour les calculs : let ou ((...))

Voir : les opérateurs arithmétiques

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

http://abs.traduc.org/abs-5.1-fr/ch09s04.html
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=59
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=61
https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shells:page-man-bash-iv-symboles-dans-les-calculs-mathematiques&&#operateurs-arithmetiques

Last update: 2023/01/27 16:08 start:raspberry:bash4 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

Syntaxe

let 'var =5 + 5'
OU LE SHELL ARITHMETIQUE :
$((5 *3))

Exemples

script

#!/bin/bash

let "a = 10"
let "b = 2"
let "c = a+b"
echo $c

let "e = 10*2"
echo $e

let "f = 15"
let "f *=2"
echo $f

echo " "

let 'var =5 + 5'
echo "$var"

echo " "
echo $ +
varl="2"
var2="5"

echo $ $var2 $varl

12
20
30
10

40

L'affectation arthmétique

Voir les opérateurs d'affectation arithmétique

Cela consiste a affecter a une variable le résultat d'un calcul arithmétique, par la constante (donc
avec let) qu'on lui a donné.
Soit une variable var de valeur x, si I'on fait var +=2 alors la variable var sera x + 2.

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 00:05

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=64
https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shells:page-man-bash-iv-symboles-dans-les-calculs-mathematiques&&#operateurs-d-affectation-arithmetique

2026/02/04 00:05 17/19 Script bash : variables, arguments, parametres

cela permet de faire des incrémentation par autre chose que 1.)
Il en va de méme pour les autres opérateurs.

e Exemples
let "a = 5"
let "b = 10"
let "c = a *= 3"
let "d = a += 3" # valeur précédente de a conservée pour calculer d :
15+3 =18
let "e =b /= 3"
let "f = b /= 3" # valeur précédente de b conservée pour calculer f : 3/3
=]
echo "c=$c d=$d e=$e f=$f" # réponse : c=15 d=18 e=3 f=1
i=1
let "i += 7"
echo "i=$i" # réponse : i=8
j=4
let "j *= 5"
echo "j=$j" # réponse : j=20

Incrémentation, décrémentation

e incrémentation, décrémentation de lavaleur1: ((var++)): ((++var)): ((var--
)), etc.

script

#!/bin/bash

let "var = 5"

echo "$var"
var++

echo "$var"
var- -

echo "$var"

Retour :

o U

e L'incrémentation se fait aussi sur une boucle !

\L;;) script

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

#!/bin/bash

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=67
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=69

Last update: 2023/01/27 16:08 start:raspberry:bash4 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

i=1 # on initialise le compteur
$1 -le ;
echo $i
let $ i+= # incremente 1 de 1 a chaque boucle

\'P VOir aussi ici

e Ou encore de cette maniére :

N=$ (($N+

voir ici le code complet de cet extrait

Changements de bases

Bash permet de changer de base (Il est par défaut en base 10)
 base 8 (octal) : un chiffre n précédé de zéro : On
exemple : 02 = 2 en base 8
* base 16(hexadécimal): un chiffre n précédé de zéro+x : Oxn
exemple : 0x3 = 3 en base 16

e autres bases : base#nombre
¢ base maximale : base 64

Références

Le shell pour tous : "Variables et environnement"
variables
Guide avancé d'écriture des scripts Bash : Introduction aux variables et aux parametres

1)

Il s'agit ben sir, de celle déclarée dans le terminal au début de I'exemple

From:
https://www.fablab37110.chanterie37.fr/ - Castel'Lab le Fablab MJC de Chateau-
Renault

Permanent link: ..
https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4 El :

Last update: 2023/01/27 16:08

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 00:05

https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:bash:script:tableaux#se-creuser-un-peu-les-meninges
https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shell:avancee#les-fonctions
https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shell:shell#variables-et-environnement
https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shell:variables
http://abs.traduc.org/abs-fr/ch04.html
https://www.fablab37110.chanterie37.fr/
https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

2026/02/04 00:05 19/19 Script bash : variables, arguments, parametres

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

	Script bash : variables, arguments, paramètres
	Création, suppression, exportation de variables
	Affectation directe :
	$nom_de_la_variable
	Une variable n'est pas typée
	Déclaration de plusieurs variables sur une ligne

	Affectation par la lecture : read
	Modification de la valeur d'une variable
	Protection de variable : "readonly"
	Suppression de variable : unset
	Exportation de la valeur d'une variable
	Définition
	Exemple

	Quand les valeurs sont des paramètres
	Utiliser des paramètres de positions

	Récupérer la longueur d'une valeur de variable
	Substitutions de commande
	Utilisation
	Deux syntaxes :
	Substitution simple : $(commande)
	Imbrication de commandes : $(cmd $(cmd))
	Imbrication avec ''set''

	Typologie des variables
	declare et typeset
	Remarques sur la commande "declare" et les calculs

	Variables numériques et calculs
	Les variables typées pour les calculs : let ou ((...))
	Syntaxe
	Exemples

	L'affectation arthmétique
	Incrémentation, décrémentation

	Changements de bases

	Références

