
2026/02/04 00:05 1/19 Script bash : variables, arguments, paramètres

Castel'Lab le Fablab MJC de Château-Renault - https://www.fablab37110.chanterie37.fr/

Script bash : variables, arguments,
paramètres

Création, suppression, exportation de variables

Le nom d'une variable est un simple pointeur vers l'emplacement mémoire où sont conservées les
données qu'elle contient.

Les variables qu'on crée dans un script (ou dans le terminal) sont localisées dans ce script (ou à
l'ouverture d'un terminal) c'est-à-dire qu'elles ne sont utilisables que lorsqu'on exécute son script, (ou
que l'on appelle la valeur d'une variable qu'on vient de déclarer dans un terminal). Et il s'agit du script
d'un utilisateur, il faut les distinguer des variables de substitution prédéfinies et des variables
d'environnement prédéfinies.

Mais comment enregistrer une valeur en mémoire ?

C'est par exemple, l'affectation d'une valeur au nom d'une variable qui va permettre d'enregistrer en
mémoire cette variable avec sa valeur

Avant tout prenez bien conscience que la déclaration d'une variable n'est pas confinée
au script, mais qu'il est possible de déclarer une variable dans le shell courant (dans le
terminal). Voir absolument : détail sur le caractère $.

Voyons d'abord comment créer une variable de cette manière et comment utiliser sa

valeur.

Affectation directe :

La déclaration d'une variable se fait lors de son affectation, c'est-à-dire lorsqu'on assigne au nom de
la variable une valeur au moyen du caractère = (sans espace avant et après).

#!/bin/bash
nom_de_la_variable=ValeurDeLaVariable

La valeur ValeurDeLaVariable a été mémorisée.

$nom_de_la_variable

Pour “utiliser” une variable, on se sert de sa valeur : il faut donc appeler sa valeur et cela se fait avec
le caractère spécial $ accolé au nom de la variable :

script

https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shells:la-page-man-bash-les-caracteres-speciaux#caracteres-des-variables-de-substitution-predefinies
https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shells:la-page-man-bash-les-caracteres-speciaux#appel-de-la-valeur-des-variables-d-environnement-predefinies
https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shells:la-page-man-bash-les-caracteres-speciaux#appel-de-la-valeur-des-variables-d-environnement-predefinies
https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shells:la-page-man-bash-les-caracteres-speciaux#details-sur-le-caractere
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=1

Last update: 2023/01/27 16:08 start:raspberry:bash4 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 00:05

#!/bin/bash
nx_fichier=les-fonctions
touch ~/$nx_fichier
ls -la ~/$nx_fichier

Les programmes (ou commandes) touch et ls ont utilisé la valeur de

la fonction nommée nx_fichier, dont la valeur correspond à la chaîne

de caractères les_fonctions.

Une variable n'est pas typée

La valeur d'une variable peut être un nombre, un ou plusieurs caractères, du texte espacé, une
commande, la valeur d'une variable.

script

#!/bin/bash
var1=a
var2=texte
var3="texte avec espaces"
var4=55
var5=$var1 #ici on affecte à la variable var5, la
valeur de la variable var1
var6=$0 #ici on affecte à la variable var6, la
valeur de la variable pré-définie $0 (1)
echo -e "valeur de var1: $var1\nvaleur de var2: $var2\nvaleur de var3:
$var3\nvaleur de var3: $var4\nvaleur de var5: $var5\nvar6: $var6"

(1) $0 a pour valeur pré-définie le nom du programme

valeur de var1: a
valeur de var2: texte
valeur de var3: texte avec espaces
valeur de var3: 55
valeur de var5: a
var6: /home/hypathie/MesScripts/mon-script

Déclaration de plusieurs variables sur une ligne

On peut déclarer plusieurs variables sur une même ligne, il suffit pour cela de mettre un espace entre
chacune :

script

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=2
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=4

2026/02/04 00:05 3/19 Script bash : variables, arguments, paramètres

Castel'Lab le Fablab MJC de Château-Renault - https://www.fablab37110.chanterie37.fr/

#!/bin/bash
set -o posix
var1=a var2=texte var3="texte avec espaces" var4=55 var5=$var1
var6=$0
/bin/echo -e "valeur de var1: $var1\nvaleur de var2: $var2\nvaleur de
var3: $var3\nvaleur de var3: $var4\nvaleur de var5: $var5\nvar6: $var6"
même retour que précédemment

Le nom d'une variable peut être composé :

par des lettres de a-z ou de A-Z ;
par des chiffres de 0-9 .
Il peut contenir un underscore _.

Mais il ne doit jamais :

commencer par un nombre ;
par underscore ;
un caractère spécial ;
ni être un mélange de lettres minuscules et majuscules.

Voir l'exemple 4.3. Affectation de variable, basique et plus élaborée
Voir Variable nulle et variable non-déclarée dans l'exemple

Pour concaténer les valeurs deux variables :

script

#!/bin/bash
var1=lala
var2=li
var3=$var1$var2
echo $var3

Affectation par la lecture : read

On peut créer des variables au moyen de commandes, comme par exemple la commande read qui
est une commande interne (ou primitive) au shell.

Syntaxe :

read nom_de_la_variable

http://abs.traduc.org/abs-fr/ch04s02.html
http://abs.traduc.org/abs-fr/ch04s03.html
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=5

Last update: 2023/01/27 16:08 start:raspberry:bash4 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 00:05

La valeur est enregistrée par l'utilisateur sur l'entrée standard (i.e. ce qu'on écrit à l'invite de
commande).
Le nom de la variable s'écrit juste après read, ce n'est qu'un pointeur vers la valeur que vous
avez rentrée.

Par exemple dans un script :

script

#!/bin/bash
echo "Bonjour : qui êtes-vous ?"
read nom
echo "Enchanté $nom !"

De même dans le terminal on peut tout à fait entrer tour à tour chacune des lignes de

ce script, essayez !

L'option -p permet d'insérer un message avant l'attente de la valeur que l'utilisateur doit entrer.

script

#!/bin/bash
read -p "entrez votre prénom: " prenom
echo "bonjour $prenom !"

Ici prenom est le nom de la variable, et sa valeur est entrée par l'utilisateur depuis le terminal.

Là aussi ces deux commandes peuvent être entrées dans le terminal.

read permet de déclarer plusieurs variables successivement (dans terminal ou script):

read -p "entrez votre nom et prénom: " nom prenom

retour de la commande

entrez votre nom et prénom:

On entre par exemple les deux chaînes de caractères, debian et facile, puis on peut récupérer
la valeur de chacune des deux variables nom et prenom.

echo $prenom $nom

retour de la commande

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=7
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=8
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=10
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=12

2026/02/04 00:05 5/19 Script bash : variables, arguments, paramètres

Castel'Lab le Fablab MJC de Château-Renault - https://www.fablab37110.chanterie37.fr/

facile debian

Mais dans un script c'est plus rapide !

read et variable non-déclarée

script

#!/bin/bash
read -p "entrez votre nom d'utilisateur: "
echo "bonjour $USER !"

Ci-dessus, on n'a pas mis le nom de la variable, parce qu'on ne cherchera pas
à utiliser la valeur de cette variable. Cela permet au programme de se poursuivre.
Quand on entre dans le terminal la réponse attendu par read, le retour de la
commande est 0, donc elle est considérée comme exécutée, et le shell passe à
l'exécution de la commande suivante.

Quelques options utiles de la commande read.

-p : afficher un message

-n : limiter le nombre de caractères

-t : limiter le temps autorisé pour saisir un message

-s : ne pas afficher le texte saisi

On peut utiliser plusieurs options.
Par exemple:

read -p "entrez votre année de naissance (deux derniers
chiffres): " -n 2 annee

Modification de la valeur d'une variable

Pour modifier la valeur d'une variable, il suffit de l'affecter d'une nouvelle valeur.

script

#!/bin/bash
var1=bonjour
echo $var1
var1=23

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=13
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=15

Last update: 2023/01/27 16:08 start:raspberry:bash4 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 00:05

echo $var1
var1=
echo $var1
var1=Bonjour
echo $var1

bonjour
23

Bonjour

Protection de variable : "readonly"

On protège une variable avec la commande readonly. La variable devient alors une variable en
lecture seule. Cela lui donne la caractéristique d'être figée : on ne peut plus alors, au cours du même
script, réaffectée par une nouvelle valeur une variable en lecture seule, y compris si cette variable a
été déclarée nulle.

script

#!/bin/bash
var1=toto
var2=
echo "$var1 $var2"
readonly var1 var2
var1=titi
var2=titi
unset var1 var2

toto
 ligne6: var1 : variable en lecture seule
 ligne7: var2 : variable en lecture seule
 ligne 8 : unset: var1 : « unset » impossible : variable est en lecture
seule
 ligne 8 : unset: var2 : « unset » impossible : variable est en lecture
seule

Suppression de variable : unset

Soit le script “essai.sh” : passons à ce script l'argument vous

script essai.sh

#!/bin/bash
var1=coucou

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=17
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=19

2026/02/04 00:05 7/19 Script bash : variables, arguments, paramètres

Castel'Lab le Fablab MJC de Château-Renault - https://www.fablab37110.chanterie37.fr/

var2=$1
echo "$var1 $var2"
unset var2
echo "$var1 $var2"
var1=$1
var2=vous
echo "$var1 $var2"
unset var2
echo "$var1 $var2"

script essai.sh

#!/bin/bash
var1=yep
var2=coucou
echo "$var1 $var2"
unset var2
echo "$var1 $var2"
echo " "
echo "mais pour un paramètre :"
echo " "
var1=yep
var2=coucou
var3=$1
echo "$var1 $var2 $var3"
unset var2 var3
echo "$var1 $var2 $var3"
var2=
var3=$1
echo "$var1 $var2 $var3"

yep coucou
yep

mais pour un paramètre :

yep coucou
yep
yep

Exportation de la valeur d'une variable

Définition

Exporter la valeur d'une variable signifie que l'on envoie à un processus fils, la valeur d'une variable
depuis un processus père.

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=20

Last update: 2023/01/27 16:08 start:raspberry:bash4 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 00:05

Un processus, c'est un programme en cours d'exécution, mais aussi son
environnement d'exécution.
Ainsi le shell qui lance un script est le processus père du script lancé. Sur la notion de
processus voir Notion de processus

Exemple

On peut exporter depuis le terminal, une valeur pour remplacer provisoirement une variable d'un
script.

Coucou="Bonjour"

On déclare la variable Coucou, affectée de la valeur Bonjour depuis le terminal.

Le shell courant l'a enregistré.

echo 'echo "Coucou=$Coucou"' > test.sh

Là, on crée le fichier “test.sh” contenant la ligne : echo “Coucou=$Coucou” .

Il contient une variable, de même nom que celle, précédemment déclarée et affectée de la valeur
Bonjour depuis le terminal.

chmod u+x test.sh

Le fichier “test.sh” devient exécutable pour l'utilisateur principal.

export Coucou

On exporte la variable Coucou1).

Attention, ce n'est jamais la valeur d'une variable que l'on exporte !

./test.sh

retour de la commande

Coucou="Bonjour"

Il faut que le script déclare une variable de même nom (Coucou=) ; qu'il récupère celle exportée
depuis le terminal ($Coucou) ; et bien évidemment, qu'il affiche (echo) tout cela :(echo
“Coucou=$Coucou”).

Dans ces conditions, la valeur de la variable Coucou une fois exportée, peut valoir pour la variable
du script “test.sh” qui est le processus fils du shell courant.

Mais une fois le terminal réinitialisé, si on lance ./test.sh, ce script est le

https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shells:bash-les-differents-caracteres-speciaux&&#notion-de-processus
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=27

2026/02/04 00:05 9/19 Script bash : variables, arguments, paramètres

Castel'Lab le Fablab MJC de Château-Renault - https://www.fablab37110.chanterie37.fr/

processus fils d'un “nouveau” processus père (= le nouveau terminal) qui n'a plus
en mémoire la valeur Bonjour pour la variable nulle Coucou du script.
Et dans ce cas :

./test.sh

retour de la commande

Coucou=

Pour réinitialiser son terminal,
il suffit de fermer et de le ré-ouvrir
ou de recharger son fichier ~/.bashrc :

source ~/.bashrc

ou

. ~/.bashrc

Quand les valeurs sont des paramètres

On peut considérer que les termes paramètre et argument sont synonymes.
Le terme paramètre de position, renvoie à l'appel de la valeur des paramètres (ou
arguments) passés au script.

Utiliser des paramètres de positions

Lorsqu'on ajoute un argument au script avant son exécution, on peut alors récupérer la valeur de ce
paramètre.

Pour récupérer chaque paramètre : $1 ; $2 ; $3 etc.

Pour récupérer tous les paramètres : $@

Pour récupérer le nombre de paramètres passés au script : $#

Pour récupérer la dernière commande : $?

(Par défaut, 0 quand tout s'est bien passé, 1 quand il y a une erreur, sinon on fait exit xx, $? affiche
xx)

EXEMPLES : soit le script “essai.sh”

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=29

Last update: 2023/01/27 16:08 start:raspberry:bash4 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 00:05

script essai.sh

#!/bin/bash
var=Bonjour
echo $var
echo "$1"
echo "$2"
echo "$3"
echo "ou le paramètre 1 est: $1, le deuxième est: $2, le troisième est
: $3"
echo " "
echo "tous les paramètres $@"

./essai.sh a b c

retour de la commande

Bonjour # on peut récupérer une valeur (ou des valeurs) déclarée(s) et
les paramètres de position
a
b
c
ou le paramètre 1 est: a, le deuxième est: b, le troisième est : c

tous les paramètres a b c

Tous les arguments passés au scripts $* et $@ sont synonymes

script

#!/bin/bash
echo $1
echo $*
echo $@
echo $#

./essai.sh bonjour à tous

retour de la commande

bonjour
bonjour à tous
bonjour à tous
3

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=32
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=34
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=35
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=37

2026/02/04 00:05 11/19 Script bash : variables, arguments, paramètres

Castel'Lab le Fablab MJC de Château-Renault - https://www.fablab37110.chanterie37.fr/

Là de même pour $* et $@ :

script

#!/bin/bash
echo $1
echo $*
echo $@
echo $#

./essai.sh "bonjour à tous"

retour de la commande

bonjour à tous
bonjour à tous
bonjour à tous
1

Mais avec la commande set qui modifie provisoirement les paramètres :

Pour plus de détails sur la commande set voir : script-bash-detail-sur-les-parametres-et-les-boucles

script essai.sh

#!/bin/bash
set "bonjour à tous"
echo $*
echo $@
echo $1
echo $#

./essai.sh

retour de la commande

bonjour à tous
bonjour à tous
bonjour à tous
1

Ou encore :

script essai.sh

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=38
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=40
https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shells:script-bash-detail-sur-les-parametres-et-les-boucles&&#syntaxe-de-set
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=41
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=43
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=44

Last update: 2023/01/27 16:08 start:raspberry:bash4 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 00:05

#!/bin/bash
set bonjour à tous
echo $*
echo $@
echo $1
echo $#

./essai.sh

retour de la commande

bonjour à tous
bonjour à tous
bonjour
3

script essai.sh

#! /bin/bash

Nombre_arguments_attendus=1

if [$# -ne $Nombre_arguments_attendus]; then
 echo "Le nombre d'arguments est invalide : $#"
 echo "Nombre argument attendu : ${Nombre_arguments_attendus} "
fi
#if ["$#" -ne 1]; then
echo "Le nombre d'arguments est invalide"
#fi

echo "Script Started !"

./essai.sh

retour de la commande

Script Started !

Récupérer la longueur d'une valeur de variable

Pour obtenir la longueur d'une chaîne stockée dans une variable, on écrit ${#VAR}.

Exemples :

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=46
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=47
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=49

2026/02/04 00:05 13/19 Script bash : variables, arguments, paramètres

Castel'Lab le Fablab MJC de Château-Renault - https://www.fablab37110.chanterie37.fr/

script

#!/bin/bash
var="j'aime debian-facile"
echo ${#var}

Pour récupérer la longueur d'un paramètre de position :

Substitutions de commande

Utilisation

Permet de se servir de la sortie d'une commande dans un autre contexte pour ;

affecter cette sortie à une variable ;1.
utiliser cette sortie comme argument d'une autre commande2.
etc.3.

Deux syntaxes :

`commande`

OU

$(commande)

Substitution simple : $(commande)

script

#!/bin/bash
dir=$(pwd)
echo "mon répertoire est : $dir"

mon répertoire est : /home/hypathie

plusieurs commandes:

script

#!/bin/bash

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=50
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=53
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=55

Last update: 2023/01/27 16:08 start:raspberry:bash4 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 00:05

echo $(pwd ; ls)

Imbrication de commandes : $(cmd $(cmd))

echo $(ls $(pwd)/Documents)

Imbrication avec ''set''

script

#!/bin/bash
set $(pwd ; whoami)
echo "$1 : $2"
echo $#

Ou

script

#!/bin/bash
set -- $(ls -l $(pwd)/.bashrc)
echo $*

Typologie des variables

Comme nous l'avons vu on peut affecter une variable par différents types de valeurs ; des chaînes de
caractères, des nombres, des valeurs d'autres variables, des substitutions de commandes.
On dit pour cela qu'en bash les variables ne sont pas typées.
Mais il peut être intéressant de typer une variable. Pour ce faire, il faut utiliser des commandes
internes à bash qui permettent de déclarer une variable typée.

declare et typeset

commandes options
declare/typeset -r : lecture seule
declare/typeset -i : entier
declare/typeset -a tableau (array)
declare/typeset -f : fonction(s)
declare/typeset -x : export
declare/typeset -x : var=$valeur

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=57
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=58

2026/02/04 00:05 15/19 Script bash : variables, arguments, paramètres

Castel'Lab le Fablab MJC de Château-Renault - https://www.fablab37110.chanterie37.fr/

Voir : Guide avancé d'écriture des scripts Bash: 9.4. Typer des variables : declare ou typeset

Remarques sur la commande "declare" et les calculs

Méthode non POSIX

La valeur d'une variable peut une expression arithmétique, pour initialiser une
variable de type entier on utilise l'option -i de la commande declare :
declare -i nom[=expression] nom[=expression] …

script

#!/bin/bash
declare -i x=35*2
echo $x

retour

70

Pour que la valeur d'une variable ne soit pas accidentellement modifier, il faut
ajouter l'attribut -r.

script

#!/bin/bash
declare -ir a=35*2
declare -ir b=5+5
echo $(($a+$b))

80

Méthode POSIX : Les commandes let et ((...)) permettent de typer les
variables pour effectuer des calculs sur les variables (synonyme de declare -i).

Variables numériques et calculs

Les variables typées pour les calculs : let ou ((...))

Voir : les opérateurs arithmétiques

http://abs.traduc.org/abs-5.1-fr/ch09s04.html
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=59
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=61
https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shells:page-man-bash-iv-symboles-dans-les-calculs-mathematiques&&#operateurs-arithmetiques

Last update: 2023/01/27 16:08 start:raspberry:bash4 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 00:05

Syntaxe

let 'var = 5 + 5'
 OU LE SHELL ARITHMÉTIQUE :
$((5 * 3))

Exemples

script

#!/bin/bash
let "a = 10"
let "b = 2"
let "c = a+b"
echo $c
let "e = 10*2"
echo $e
let "f = 15"
let "f *=2"
echo $f
echo " "
let 'var = 5 + 5'
echo "$var"
echo " "
echo $((20 + 20))
var1="2"
var2="5"
echo $(($var2 % $var1))

12
20
30

10

40
1

L'affectation arthmétique

Voir les opérateurs d'affectation arithmétique

Cela consiste à affecter à une variable le résultat d'un calcul arithmétique, par la constante (donc
avec let) qu'on lui a donné.
Soit une variable var de valeur x, si l'on fait var +=2 alors la variable var sera x + 2.

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=64
https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shells:page-man-bash-iv-symboles-dans-les-calculs-mathematiques&&#operateurs-d-affectation-arithmetique

2026/02/04 00:05 17/19 Script bash : variables, arguments, paramètres

Castel'Lab le Fablab MJC de Château-Renault - https://www.fablab37110.chanterie37.fr/

cela permet de faire des incrémentation par autre chose que 1.)
Il en va de même pour les autres opérateurs.

Exemples

let "a = 5"
let "b = 10"
let "c = a *= 3"
let "d = a += 3" # valeur précédente de a conservée pour calculer d :
15+3 =18
let "e = b /= 3"
let "f = b /= 3" # valeur précédente de b conservée pour calculer f : 3/3
=1
echo "c=$c d=$d e=$e f=$f" # réponse : c=15 d=18 e=3 f=1
i=1
let "i += 7"
echo "i=$i" # réponse : i=8
j=4
let "j *= 5"
echo "j=$j" # réponse : j=20

Incrémentation, décrémentation

incrémentation, décrémentation de la valeur 1 : ((var++)) ; ((++var)) ; ((var--
)), etc.

script

#!/bin/bash
let "var = 5"
echo "$var"
((var++))
echo "$var"
((var--))
echo "$var"

Retour :

5
6
5

L'incrémentation se fait aussi sur une boucle !

script

#!/bin/bash

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=67
https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:raspberry:bash4&codeblock=69

Last update: 2023/01/27 16:08 start:raspberry:bash4 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 00:05

i=1 # on initialise le compteur
while [$i -le 10]; do
 echo $i
 let $[i+=1] # incremente i de 1 a chaque boucle
done

voir aussi ici

Ou encore de cette manière :

N=$(($N+1))

voir ici le code complet de cet extrait

Changements de bases

Bash permet de changer de base (Il est par défaut en base 10)

base 8 (octal) : un chiffre n précédé de zéro : 0n

exemple : 02 ⇒ 2 en base 8

base 16(hexadécimal): un chiffre n précédé de zéro+x : 0xn

exemple : 0x3 ⇒ 3 en base 16

autres bases : base#nombre
base maximale : base 64

Références

Le shell pour tous : "Variables et environnement"
variables
Guide avancé d'écriture des scripts Bash : Introduction aux variables et aux paramètres

1)

Il s'agit ben sûr, de celle déclarée dans le terminal au début de l'exemple

From:
https://www.fablab37110.chanterie37.fr/ - Castel'Lab le Fablab MJC de Château-
Renault

Permanent link:
https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

Last update: 2023/01/27 16:08

https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:bash:script:tableaux#se-creuser-un-peu-les-meninges
https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shell:avancee#les-fonctions
https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shell:shell#variables-et-environnement
https://www.fablab37110.chanterie37.fr/doku.php?id=doc:programmation:shell:variables
http://abs.traduc.org/abs-fr/ch04.html
https://www.fablab37110.chanterie37.fr/
https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash4

2026/02/04 00:05 19/19 Script bash : variables, arguments, paramètres

Castel'Lab le Fablab MJC de Château-Renault - https://www.fablab37110.chanterie37.fr/

	Script bash : variables, arguments, paramètres
	Création, suppression, exportation de variables
	Affectation directe :
	$nom_de_la_variable
	Une variable n'est pas typée
	Déclaration de plusieurs variables sur une ligne

	Affectation par la lecture : read
	Modification de la valeur d'une variable
	Protection de variable : "readonly"
	Suppression de variable : unset
	Exportation de la valeur d'une variable
	Définition
	Exemple

	Quand les valeurs sont des paramètres
	Utiliser des paramètres de positions

	Récupérer la longueur d'une valeur de variable
	Substitutions de commande
	Utilisation
	Deux syntaxes :
	Substitution simple : $(commande)
	Imbrication de commandes : $(cmd $(cmd))
	Imbrication avec ''set''

	Typologie des variables
	declare et typeset
	Remarques sur la commande "declare" et les calculs

	Variables numériques et calculs
	Les variables typées pour les calculs : let ou ((...))
	Syntaxe
	Exemples

	L'affectation arthmétique
	Incrémentation, décrémentation

	Changements de bases

	Références

