2026/02/04 08:33 1/22 Introduction aux scripts shell

Introduction aux scripts shell

Un script shell permet d'automatiser une série d'opérations. Il se présente sous la forme d'un fichier
contenant une ou plusieurs commandes qui seront exécutées de maniere séquentielle.

#!/bin/bash

This script will take an animated GIF and delete every other frame
Accepts two parameters: input file and output file

Usage: ./<scriptfilename> input.gif output.gif

Make a copy of the file
cp II$1II II$2II

Get the number of frames

numframes=$(gifsicle --info "$1" \
grep --perl-regexp --only-matching '\d+ images' \
grep --perl-regexp --only-matching '\d+'

Deletion

let i=
test $1i -1t $numframes

rem=$ $1
test $rem -eq

gifsicle "$2" --delete "#"$(($1 -0 "$2"

let i=i+

Pour faire qu'un script soit exécutable

Méthode graphique

Votre script est un simple fichier texte, par défaut il s'ouvre donc avec I'éditeur de texte défini par
défaut (ex : Gedit dans une session Unity ou Gnome).

Pour qu'il soit autorisé a se lancer en tant que programme, il faut modifier ses propriétés. Pour cela
faites un clic droit sur son icone, et dans I'onglet “Permissions” des “Propriétés”, cocher la case
“autoriser I'exécution du fichier comme un programme”.

Par la suite, un double-clic sur I'icone vous laissera le choix entre afficher le fichier (dans un éditeur
de texte) et le lancer (directement ou dans un terminal pour voir d'éventuels messages d'erreurs)

Par ailleurs Nautilus ne propose pas de lancer le script par simple clic avec les réglages de bases. Il
faut aller dans Menu- Edition - Préférences -» Onglet comportement - fichier texte et

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

https://www.fablab37110.chanterie37.fr/doku.php?id=gedit
https://www.fablab37110.chanterie37.fr/doku.php?id=nautilus

Last update: 2023/01/27 16:08 start:raspberry:bash2 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash2

exécutable et cocher pour fichiers exécutables Demander a chaque fois.

Probléeme connu

Sous Lubuntu, si cette méthode ne fonctionne pas, vous devez d'abord effectuer I'opération suivante :

1. Dans le menu principal, allez sur Outils systéme et faites un clic droit - Propriétés sur le
raccourci vers le terminal. Notez le contenu du champ Commande et annulez.

2. Ouvrez votre gestionnaire de fichier PCManFM et allez dans le menu supérieur sur éditer -
Préférences puis dans la fenétre qui s'ouvre sélectionnez Avancé.

3. Remplacez le contenu du champ Terminal emulator par le contenu du champ Commande que
vous avez pris soin de noter a la premiere étape.

4. Vous pouvez ensuite suivre la méthode graphique indiquée ci-dessus pour exécuter vos scripts
shell.

Méthode dans un terminal

Il suffit de se placer dans le dossier ou est le script, et de lancer:
bash nom du script

mais pas toujours bash (dépend du langage du script)

ou si vous voulez I'exécuter par son nom, il faut le rendre exécutable avec chmod. Pour ceci tapez la
commande qui suit:

chmod +x nom du script
Puis vous pouvez exécuter le script en faisant :
nom du script

mais pourquoi le ./ ?

Le chemin ./

[l peut étre intéressant d'ajouter un répertoire au “PATH"” pour pouvoir exécuter ses scripts sans avoir
a se placer dans le bon dossier. Je m'explique, quand vous tapez une commande (“Is” par exemple),
le shell regarde dans le PATH qui lui indique ou chercher le code de la commande.

Pour voir a quoi ressemble votre PATH, tapez dans votre console:
echo $PATH
Cette commande chez moi donnait initialement :

/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 08:33

https://www.fablab37110.chanterie37.fr/doku.php?id=lubuntu
https://www.fablab37110.chanterie37.fr/doku.php?id=pcmanfm

2026/02/04 08:33 3/22 Introduction aux scripts shell

C'est a dire que le shell va aller voir si la définition de la commande tapée (“Is” pour continuer sur le
méme exemple) se trouve dans /usr/local/bin puis dans /usr/bin... jusqu'a ce qu'il la trouve.

Ajouter un répertoire au PATH peut donc étre trés pratique. Par convention, ce répertoire s'appelle
bin et se place dans votre répertoire personnel. Si votre répertoire personnel est /home/toto, ce
répertoire sera donc /home/toto/bin. Pour pouvoir utiliser vos scripts en tapant directement leur
nom (sans le “./") depuis n'importe quel répertoire de votre ordinateur, il vous suffit d'indiquer au
shell de chercher aussi dans ce nouveau dossier en I'ajoutant au PATH. Pour ceci, il suffit de faire :

export PATH=$PATH:$HOME/bin

La commande

echo $PATH

retourne maintenant
/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games:/home/toto/bin

et je peux lancer le script appelé “monScript” situé dans “/home/toto/bin” en tapant directement :
monScript

Cette procédure est pour une modification temporaire du PATH et qui sera donc
(effacée a la fin de la session. Pour rendre la modification permanente, ajouter la
3 commande dans le fichier texte caché .bashrc se trouvant dans votre dossier
personnel ainsi que dans le dossier /root.

automatiqguement ajouté au PATH. La commande est incluse dans le fichier ~/.profile

@ Dans les dernieres versions de ubuntu (12.04 +) si le dossier $HOME/bin existe il est
lancé lors de toutes sessions (graphique ou console).

Les différents types de shells

Comme vous avez slrement di I'entendre, il existe différents types de shells ou en bon francais,
interpréteurs de commandes :

e @ dash (Debian Aimquist shell) : shell plus léger que bash, installé par défaut sur Ubuntu ;

e bash (Bourne Again SHell) : concu par le projet GNU, shell linux ; le shell par défaut sur Ubuntu ;

e rbash : un shell restreint basé sur bash. Il existe de nombreuses variantes de bash ;

e csh, tcsh : shells C, créés par Bill Joy de Berkeley ;

e zsh, shell C écrit par Paul Falstad ;

e ksh (e ksh88 sur Solaris et équivaut a ksh93 sur les autres UNIX/Linux cf.Korn shell History):
shells korn écrits par David Korn, pdksh (Public Domain Korn Shell & ksh88) ;

e rc: shell C, lui aussi concu par le projet GNU ;

e tclsh : shell utilisant Tcl ;

e wish : shell utilisant Tk .

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

https://fr.wikipedia.org/wiki/Debian_Almquist_shell
https://fr.wikipedia.org/wiki/Debian_Almquist_shell
https://www.fablab37110.chanterie37.fr/doku.php?id=bash
http://en.wikipedia.org/wiki/Korn_shell#History

Last update: 2023/01/27 16:08 start:raspberry:bash2 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash2

Il existe bien entendu beaucoup d'autres types de shells.
Pour savoir quel type de shell est présent sur une machine, aller dans un terminal et taper la
commande ps.

La commande sh est en fait un lien symbolique vers I'interpréteur de commandes par défaut :
/bin/dash.

Les variables

[l faut savoir que en bash les variables sont toutes des chaines de caracteres.

Cela dépendra de son USAGE, pour une opération arithmétique prochaine voir : let ma_variable sinon
pour conserver une valeur : il suffit de lui donner un nom et une valeur avec I'affectation égale :
ma_variable=unmot

Ici la valeur est affectée a la variable ma_variable .

Attention: pas d'espace ni avant ni apres le signe “=".

Autre exemple avec une commande avec arguments :

nbre lignes=$(wec -1 < fichier.ext

nbre_lignes contiendra le nombre de lignes contenu dans fichier.ext .

Pour voir le contenu d'une variable, on utilisera echo (par exemple) :
echo $ma variable

renverra : unmot .

Pour gérer les espaces et autres caracteres spéciaux du shell, on utilisera les guillemets ou bien une
notation avec des apostrophes :

echo $ma variable
echo "$ma_variable"
echo ${ma variable}
echo "${ma_variable}"

renverront toutes la méme réponse : unmot .

Et avec des chemins de répertoires :

chemin de base="/home/username/un repertoire avec espaces"
chemin complet="$chemin_de base/repertoire"

C!) Comme on le voit ci-dessus si on met une chaine de caracteres avec des espaces

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 08:33

2026/02/04 08:33 5/22 Introduction aux scripts shell

entre guillemets, la variable la prend bien mais attention a I'utiliser aussi avec des
guillemets...

@ rsync -av "$chemin_complet" ..

sinon les espaces reprennent leurs roles de séparateur!

Des variables systeme permettent d'accélérer la saisie et la compréhension. Pour voir les variables
d'environnement de votre systeme tapez simplement :

env
Quelques variables d'environnement a connaitre : HOME, USER, PATH, IFS,...
Pour appeler ou voir une variable, par exemple HOME, il suffit de mettre un $ devant, par exemple :

echo $HOME

Ce petit code va afficher la variable HOME a I'écran.

Il existe des variables un peu spéciales :

Nom fonction

$* |contient tous les arguments passés a la fonction
$# |contient le nombre d'arguments

$? |contient le code de retour de la derniere opération
$0 |contient le nom du script

$n |contient I'argument n, n étant un nombre

$! |contient le PID de la derniere commande lancée

Exemple : créer le fichier arg.sh avec le contenu qui suit :

#!/bin/bash

echo "Nombre d'arguments ... : "$#

echo "Les arguments sont ... : "$*

echo "Le second argument est : "$2

echo "Et le code de retour du dernier echo est : "$?

Lancez ce script avec un ou plusieurs arguments et vous aurez :

arg.sh 1 2 3
Nombre d'arguments ... : 3
Les arguments sont ... : 12 3
Le second argument est : 2
Et le code de retour du dernier echo est : ©

Exemple: un sleep interactif pour illustrer $! (Cf. les fonctions).
Pour déclarer un tableau, plusieurs méthodes : premiere méthode (compatible bash, zsh, et ksh93

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

https://www.fablab37110.chanterie37.fr/doku.php?id=tutoriel:script_shell#les_fonctions

Last update: 2023/01/27 16:08 start:raspberry:bash2 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash2

mais pas ksh88, ni avec dash, qui est lancé par “sh”) :

tab=("John Smith" "Jane Doe"

ou bien:
tab ='John Smith'
tab ='Jane Doe'

Pour compter le nombre d'éléments du tableau :
len=${#tab[*]} ou echo ${#tab[@]}
Pour afficher un élément :
echo ${tab[1]}
Pour afficher tous les éléments :
echo ${tab[@]}
ou bien (en bash ou en ksh93 mais pas en ksh88) :

i ${!tabl@]}; echo ${tab[i]};
ou encore (C style) :

i=0; 1 < ${#tabl[@]}; i++)); echo ${tab[i]};

NB : toutes les variables sont des tableaux. Par défaut, c'est le premier élément qui est appelé :
echo ${tab[0]}
et:
echo ${tab}

renverront la méme réponse.

NB2 : les tableaux sont séparés par un séparateur défini : I'IFS. Par défaut I'IFS est composé des trois
caracteres : $' \t\n' soit espace, tabulation, saut de ligne. Il peut étre forcé sur un autre caractere.

IFS=$SEPARATEUR

$SEPARATEUR pourra étre :

e une lettre (pe: n,i,...)
e une ponctuation (pe : "', ", '-'...)
e un caractere spécial : ($'\t' : tabulation, $'\n' : saut de ligne,...)

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 08:33

2026/02/04 08:33 7/22 Introduction aux scripts shell

Les arguments en ligne de commande

Pour passer des arguments en ligne de commande c'est encore une fois tres simple. Chaque
argument est numéroté et ensuite on I'appelle par son numéro :

./test.sh powa noplay
Voici notre test.sh

#!/bin/sh
echo $3
echo $2

Notez que $0 est le nom du fichier.

shift est une commande tres pratique lorsque vous traitez des arguments en ligne de commande.
Elle permet de faire “défiler” les arguments ($0, $1, $2, ...). C'est a dire que le contenu de $1 passe
dans $0, celui de $2 dans $1 et ainsi de suite. Il est tout a fait possible de traiter les arguments avec
for i in $*; do mais lorsque vous aurez des options du style —title “mon_titre” il sera tres
laborieux de récupérer la valeur “mon_titre”.

Voici un exemple de script ol vous devez vous souvenir de ce que vous avez écrit (un petit jeu de
mémoire, quoi) :

#!/bin/sh
clear # Un peu facile si la commande reste au dessus :-)
$# =

echo -n "Taper l'option suivante
read Reslt
"$Reslt" = "$1" |;
echo "Bien joué !"

echo "Non mais quand méme !!! C'ETAIT $1 ET NON PAS $Reslt PETIT FRIPON
P
sleep 3 # Juste pour le fun du script qui rage ;-p
echo "Donc je te bannis de ubuntu-fr.org ! Et toc !! Tu ne peux rien
contre moi !!!"
exit
shift # On défile

echo "Vous avez réussi !"
L'arithmétique

variable = 2 + $autre var

Exemple: besoin de définir des plages de valeurs (1 a 500 puis 501 a 1000 puis 1001 a 1500...)

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

Last update: 2023/01/27 16:08 start:raspberry:bash2 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash2

id per step = 500

i=0; 1i<8; i++ :
min_step id 1+ $i $id per step
max_step id = $1 + 1 $id per step

echo "$min_step_id to $max_step id "

Vocabulaire

La commande test

La commande test existe sous tous les Unix, elle permet de faire un test et de renvoyer 0 si tout s'est
bien passé ou 1 en cas d'erreur.

En mode console, faites man test pour connaitre tous les opérateurs, en voici quelques-uns :

Opérateurs de test sur fichiers

Syntaxe

Fonction réalisée

-e fichier

renvoie 0 si fichier existe.

-d fichier

renvoie 0 si fichier existe et est un répertoire.

-f fichier

renvoie 0 si fichier existe et est un fichier 'normal’.

-w fichier

renvoie 0 si fichier existe et est en écriture.

-x fichier

renvoie 0 si fichier existe et est exécutable.

fl -nt f2

renvoie 0 si f1 est plus récent que f2.

fl -ot f2

renvoie 0 si f1 est plus vieux que f2.

Opérateurs de comparaison numérique

Syntaxe|Fonction réalisée

$A -It 5 |[renvoie 0 si $A est strictement inférieur a 5
$A -le 5 |renvoie 0 si $A est inférieur ou égal a 5

$A -gt 5 |renvoie 0 si $A est strictement supérieur a 5
$A -ge 5 |renvoie 0 si $A est supérieur ou égal a 5

$A -eq 5 |renvoie 0 si $A est égal a 5

$A -ne 5 |renvoie 0 si $A est différent de 5

Les crochets

On peut raccourcir la commande test par des crochets. Exemple :

test -f
echo $7
0

-f /e
echo $7?

etc/passwd

tc/passwd

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 08:33

http://www.bash-linux.com/unix-man-test-francais.html

2026/02/04 08:33 9/22 Introduction aux scripts shell

Affichera la valeur 0 : ce fichier existe, 1 dans le cas ou le fichier /etc/passwd n'existe pas. Sous Unix,
le code de retour est par convention et en général 0 s'il n'y a aucune erreur et différent de 0 dans les
autres cas.

La syntaxe la plus appropriée dans de la programmation shell moderne est le double crochet :
-f /etc/passwd

Cela gére bien mieux les problemes d'espaces dans les noms de fichiers, les erreurs etc... C'est une
structure prepre-a bash (ksh, ?) qui est le shell par défaut dans la plupart des distributions Linux, et
de Ubuntu en particulier. On garde en général des simples crochets pour les scripts shell qui doivent
étre a tout prix POSIX (utilisation sur des Unix sans installation préalable de bash, comme BSD,
Solaris...) .

Les opérateurs logiques

lyaen3:
¢ le et logique : -a
* le ou logique : -0
* |le non logique : !

Exemple :

echo "renverra 0 si les deux expressions sont vraies"
test exprl -a expr2
exprl -a expr2

Table de vérité de « -a »

Comparaison Résultat|/Calcul

OetO 0 0x0=0
Oetl 0 0x1=0
letO 0 1x0=0
letl 1 1x1=1

Les deux assertions doivent étre vérifiées pour que la condition le soit aussi.

Table de vérité de « -0 »

Comparaison|Résultat Calcul

Oou0 0 0+0=0
Ooul 1 0+1=1
lou0 1 1+0=1
loul 1 1+1=1

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

Last update: 2023/01/27 16:08 start:raspberry:bash2 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash2

Des que I'une des deux assertions est vérifiée, la condition globale I'est aussi.

Exemple plus complet :
#!/bin/sh

echo -n "Entrez un nom de fichier: "
read file
-e "$file" 1;
echo "Le fichier existe!"

echo "Le fichier n'existe pas, du moins n'est pas dans le répertoire
d'exécution du script"

La seule chose qui préte a confusion est que I'on vérifie seulement si le fichier « file » est dans le
répertoire ou le script a été exécuté.

La structure : if

Avant de commencer a faire des scripts de 1000 lignes, il serait intéressant de voir comment se servir
des variables, et des instructions if, then, elif, else, fi. Cela permet par exemple de faire réagir
le script de maniere différente, selon la réponse de ['utilisateur a une question.

En bash, les variables ne se déclarent généralement pas avant leur utilisation, on les utilise
directement et elles sont créées lors de sa premiére mise en ceuvre.

Pour pouvoir voir la valeur d'une variable il faut faire précéder son nom du caractere « $ ».

#!/bin/sh
echo -n "Voulez-vous voir la liste des fichiers Y/N
read ouinon

||$ouinon|| = ||y|| ||$°uinon|| = ||Y|| ;
echo "Liste des fichiers :"
1s -la

||$ouinon|| = ||n|| ||$ouinon|| = ||N|| ;

echo "0k, bye!

echo "Il faut taper Y ou N!! Pas $ouinon"

Explication
Ce script peut paraitre simple a premiere vue mais certaines choses prétent a confusion et ont besoin
d'étre expliquées en détail.

Tout abord, le “echo -n" permet de laisser le curseur sur la méme ligne, ce qui permet a I'utilisateur
de taper la réponse aprées la question (question d'esthétique).

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 08:33

2026/02/04 08:33 11/22 Introduction aux scripts shell

L'instruction "~ read” permet d'affecter une valeur ou un caractere a une variable quelconque, en la
demandant a l'utilisateur.

valeur numérique, et les majuscules sont considérées différentes des minuscules, $M

.J En bash, la variable est considérée comme une chaine méme si celle-ci contient une
$m.

Ensuite vient I'instruction conditionnelle "if". Elle est suivie d'un « [» pour délimiter la condition. La
condition doit bien étre séparée des crochets par un espace ! Attention, la variable est mise entre
guillemets car dans le cas ou la variable est vide, le shell ne retourne pas d'erreur, mais en cas
contraire, I'erreur produite ressemble a :

[: =: unaryoperator expected

L'opérateur " | | * signifie exécuter la commande suivante si la commande précédente n'a pas
renvoyé 0. Il existe aussi I'opérateur && qui exécute la commande suivante si la commande
précédente a renvoyé 0, et enfin ; qui exécute I'opération suivante dans tous les cas.

Exemple : créer le répertoire toto s'il n' existe pas

-d /tmp/toto mkdir /tmp/toto
-d /tmp/toto mkdir /tmp/toto
test -d /tmp/toto mkdir /tmp/toto
rm -rf /tmp/toto;mkdir /tmp/toto

Les « { » servent a bien délimiter le bloc d'instructions suivant le ~then", est une commande et donc
si elle est sur la méme ligne que le “if" les deux commandes doivent étre séparées par un ~;°

Ensuite, “elif sert a exécuter une autre série d'instructions, si la condition décrite par “if" n'est
pas respectée, et si celle fournie apres ce "elif l'est.

Enfin, “else’ sert a exécuter un bloc si les conditions précédentes ne sont pas respectées (ah les

o0
jeunes, ils respectent plus rien de nos jours).

“fi’ indique la fin de notre bloc d'instructions “if . Cela permet de voir ou se termine la portion de
code soumise a une condition.

Quelques petites commandes pratiques :
sh -n nom du fichier

ou

bash -x chemin du fichier

Cette commande vérifie la syntaxe de toutes les commandes du script, pratiqgue quand on débute et
pour les codes volumineux.

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

Last update: 2023/01/27 16:08 start:raspberry:bash2 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash2

sh -u nom du fichier

Celle-ci sert a montrer les variables qui n'ont pas été utilisées pendant I'exécution du programme.

Voici le tableau des opérateurs de comparaison, ceux-ci peuvent s'avérer utiles pour diverses raisons,
nous verrons un peu plus loin un exemple.

$A = $B # Vérifie si les deux chaines sont égales.
$A '= $B # Vérifie si les deux chaines sont différentes.
-z $A # Vérifie si A n'existe pas (ne contient pas de chaine).

-n $A # Vérifie si A existe (contient une chaine).

Les structures while et until

La commande while exécute ce qu'il y a dans son bloc_tant que la condition est respectée :

#!/bin/sh
cmpt=
cm=
echo -n "Mot de passe : "
read mdp
||$mdp|| = "UbUI’]tU" ||$cmpt|| =

echo -n "Mauvais mot de passe, plus que "$cm" chance(s): "
read mdp

cmpt=$(($cmpt+

cm=$(($cm-

echo "Non mais, le brute-force est interdit en France !'!"

On retrouve des choses déja abordées avec "if . Le "&& sert a symboliser un “et”, cela implique que
deux conditions sont a respecter. Le "do” sert a exécuter ce qui suit si la condition est respectée. Si
elle ne I'est pas, cela saute tout le bloc (jusqu'a "done’). Vous allez dire :

Mais qu'est-ce que c'est ce truc avec cette syntaxe bizarre au milieu ?

Cette partie du code sert tout simplement a réaliser une opération arithmétique. A chaque passage,
‘cmpt = cmpt+1' et 'cm = cm-1".

“while® permet de faire exécuter la portion de code un nombre indéterminé de fois. La commande
“until” fait la méme chose que la commande “while® mais en inversant. C'est-a-dire qu'elle exécute le
bloc jusqu'a ce que la condition soit vraie, donc elle s'emploie exactement comme la commande
“while".

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 08:33

2026/02/04 08:33 13/22 Introduction aux scripts shell

Par exemple, si on a besoin d'attendre le démarrage de notre window manager pour exécuter des
commandes dans notre Xsession il sera plus intéressant d'utiliser le “until :

#!/bin/sh
pidof wmaker

sleep

xmessage "Session loaded" -buttons "Continue":0,"That all":1;
$?7 -eq xmessage "Load more..."

Mais on aurait pu aussi faire:

#!/bin/sh
-z $(pidof wmaker

sleep

#(...)

La structure case

Regardons la syntaxe de cette commande, qui n'est pas une des plus simples :

variable
modéele modele]! ...) instructions
modele modele! ...) instructions

Cela peut paraitre complexe mais on s'y habitue quand on I'utilise.
Mais a quoi sert cette commande ?

Elle sert a comparer le contenu d'une variable a des modeles différents. Les ;; sont indipensables car
il est possible de placer plusieurs instructions entre un modele et le suivant. Les ;; servent donc a
identifier clairement la fin d'une instruction et le début du modele suivant.

Exemple :
#!/bin/sh

echo -n "Etes-vous fatigué ? "
read on
Il$onll
oui | o | O | Oui | OUI) echo "Allez faire du café
non n N Non NON) echo "Programmez !"
echo "Ah bon ?"

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

Last update: 2023/01/27 16:08 start:raspberry:bash2 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash2

La seule chose qui mérite vraiment d'étre expliquée est sans doute "*)". Cela indique tout
simplement I'action a exécuter si la réponse donnée n'est aucune de celles données précédemment.

Il existe aussi plusieurs structures pour les modeles, telles que :

nN echo "Blablabla..."
n N echo "Bla...."

Et plein d'autres encore...

On mélange tout ca

Pour vous donner une idée précise de ce que peuvent réaliser toutes ces instructions, voici un petit
script censé refaire un prompt avec quelques commandes basiques :

#!/bin/bash

clear
echo
eCho "#H#HHAHHHBHIHHBHARHHIH SCript HHHAHHHHHIHHBHHARHHHH AR
echo
eCho "H#HHHHHHHHHHHHHHHBHHHA IR HHAA"
echo -n "LOGIN: "
read login
echo -n "Hote: "
read hote
echo "H#HH#HHHHHHHHHHHHHHHHH A"
echo
echo "### Pour 1'aide tapez help ###"
echo
1 1]; # permet une boucle infinie
echo -n ""$login"@"$hote"$ " # qui s'arréte avec break
read reps

$reps
help hlp

echo "A propos de TS --> about"

echo "ls --> liste les fichiers"

echo "rm --> détruit un fichier (gquidé)"

echo "rmd --> efface un dossier (guidé)"

echo "noyau --> version du noyau Linux"

echo "connect --> savoir qui s'est connecté dernierement"
s

1s -la
rm

echo -n "Quel fichier voulez-vous effacer : "

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 08:33

2026/02/04 08:33 15/22 Introduction aux scripts shell

read eff
rm -f $eff
rmd rmdir
echo -n "Quel répertoire voulez-vous effacer

read eff

rm -r $eff
noyau “uname -r"

uname -r
connect

last
about --v | vers

echo "Script simple pour l'initiation aux scripts shell"
quit "exit"

echo Au revoir

break

echo "Commande inconnue"

Remarque

Comme vous l'avez remarqué, l'indentation a une place importante dans ce programme. En effet,
celui-ci est plus lisible et cela évite aussi de faire des erreurs. C'est pourquoi il est préférable de bien
structurer le code que vous écrivez.

La structure for

L'instruction “for® exécute ce qui est dans son bloc un nombre de fois prédéfini. Sa syntaxe est la
suivante :

variable valeurs;
instructions

ou le classique:

i=$min; i<=$max; i++));
instructions avec 1 # ou pas

Comme vous I'aurez sans doute remarqué, on assigne une valeur différente a variable a chaque
itération. On peut aussi tres facilement utiliser des fichiers comme “valeur”.
Rien ne vaut un exemple :

#!/bin/sh
var LExt;
echo "$var"

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

Last update: 2023/01/27 16:08 start:raspberry:bash2 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash2

On peut voir une syntaxe un peu particuliere :
$(sort *.txt

Ceci sert a indiquer que ce qui est entre les parentheses est une commande a exécuter.

On peut aussi utiliser cette instruction simplement avec des nombres, cela permet de connaitre le
nombre d'itérations :

#!/bin/sh
var C
echo $var

On peut tres bien aussi utiliser d'autres types de variables, comme par exemple des chaines de
caracteres :

#!/bin/sh
var Ubuntu Breezy ;
echo $var

[l faut quand méme faire attention au fait que Ubuntu Breezy 5.10 est différent de “Ubuntu Breezy
5.10” dans ce cas. En effet, tous les mots placés entre “” sont considérés comme faisant partie de la
méme chaine de caracteres. Sans les “”, sh considerera qu'il y a une liste de trois chaines de
caracteres.

Les fonctions

Les fonctions sont indispensables pour bien structurer un programme mais aussi pouvoir le simplifier,
créer une tache, la rappeler... Voici la syntaxe générale de 'déclaration' d'une fonction :

nom_ fonction

instructions

Cette partie ne fait rien en elle méme, elle dit juste que quand on appellera nom_fonction, elle fera
instruction. Pour appeler une fonction (qui ne possede pas d'argument, voir plus loin) rien de plus
simple :

nom_fonction

Rien ne vaut un petit exemple :

#!/bin/sh

#Definition de ma fonction

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 08:33

2026/02/04 08:33 17/22 Introduction aux scripts shell

mafonction
echo 'La liste des fichiers de ce répertoire'
1s -1

#fin de la définition de ma fonction

echo 'Vous allez voir la liste des fichiers de ce répertoire:'
mafonction #appel de ma fonction

Comme vous I'avez sans doute remarqué, quand on appelle la fonction, on exécute simplement ce
qu'on lui a défini au début, dans notre exemple, echo... et Is -I, on peut donc faire exécuter n'importe
quoi a une fonction.

Les fonctions peuvent étre définies n'importe ou dans le code du moment qu'elles sont définies avant
d'étre utilisées. Méme si en bash les variables sont globales, il est possible de les déclarer comme
locales au sein d'une fonction en la précédant du mot clé local: local ma_fonction .

Exemple: un sleep interactif :

#!/bin/bash

info

echo -e "$1\nBye"

exit
test -z "$1" info "requiert 1 argument pour le temps d'attente..."
PRINT=$(($1
test -z $(echo "$1" grep -e "7[0-9]*%" info "'$1' est un mauvais
argument"”
test $1 -gt info "Je ne prends que les entiers > 0"

print until sleep
local COUNT=
-d /proc/$1 |;

test $(($COUNT=$2 -eq echo -n "*"
COUNT=$(($COUNT+

sleep $1 & print until sleep $! $PRINT
echo -e "\nBye"

Extraire des sous-chaines

Pour extraire une chaine d'une chaine on utilise : ${ chaine : position : nombre de
caracteres } (n'oubliez pas le : qui sépare les “parametres”).

Dans la partie chaine pour faire référence a une variable on ne met pas de $!
Tandis que dans les autres options le $ est nécessaire (sauf si vous n'utilisez pas de
variable). Il y a de quoi s"emméler les pinceaux. Si vous n'avez pas compris (ce n'est
pas étonnant), les exemples de cette partie vous aideront beaucoup.

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

Last update: 2023/01/27 16:08 start:raspberry:bash2 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash2

Par exemple pour savoir ce que I'on aime manger en fonction de sa langue (vous étes alors vraiment

7~ N\
e o

ultra geek =" 1):

#!/bin/bash
#favoritefood
${LANG:0:2} = "fr" 1;
echo "Vous aimez les moules frites !"
${LANG:0:2} = "en" |;
echo "You love the... pudding !"
${LANG:0:2} = "es"];
echo "Te gusta el jamé6n !"

echo Il: I_(II
#Noter que $LANG n'a pas le préfixe '$'. ${$LANG:0:2} ne fonctionne pas !
puis :

$./favoritefood

Vous aimez les moules frites
$ env LANG=en ./favoritefood
You love the... pudding

$ env LANG=es ./favoritefood
Te gusta el jamdn

$ env LANG=it ./favoritefood
SR

Ce code illustre un moyen de faire des scripts multilingues .

Une variante permet de tronquer uniqguement le début de la chaine. C'est ${ chaine : nombre de
caracteres}.
Le tout peut s'illustrer par un (vraiment) petit exemple :

#!/bin/bash

#truncbegin <chaine> <nombre>

echo ${1:$2}

#Noter bien que echo ${1:2} tronquerait les 2 premiers caractéres (et non le
nombre indiqué par le 2e parametre).

puis :

$./truncbegin "Hello world !" 5
world

La couleur

Qui n’a jamais voulu faire un script avec des couleurs pour pouvoir différencier les titres des
parametres et les parametres de leur valeur par exemple...

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 08:33

2026/02/04 08:33 19/22 Introduction aux scripts shell

Présentation de la syntaxe

Comme toute commande sous Linux, il faut utiliser une syntaxe par défaut et y passer quelques
parametres. Pour les couleurs au sein de scripts shell, c'est le méme principe.

echo -e '\033[A;B;Cm toto \033[Om'

Dans la commande passée ci-dessus, nous pouvons constater qu’il y a 3 parametres présents: A, B et
C.

A : correspond a un effet affecté au texte affiché B : correspond a la couleur du texte C : identifie la
couleur du fond du texte affiché

Et enfin on termine notre affichage avec « \033[0m », qui spécifie au terminal de revenir aux couleurs
définies par défaut.

Présentation des différentes valeurs Effet

Nous allons commencer par les différents effets possibles :

Code|Effet

0 Normal

1 Gras

21 |Non-gras

2 Sombre
22 Non-sombre

3 Italique

23 |Non-italique
4 Souligné

24 |Non-souligné
5 Clignotant
25 |Non-clignotant
7 Inversé

27 |Non-inversé
8 Invisible

28 |Non-invisible
9 Barré

29 |Non-barré

Présentation des différentes valeurs des couleurs

Maintenant que nous avons présenté les différents effets possibles d'attribuer a du texte, nous allons
nous attaquer aux couleurs.

Chaque couleur a 2 valeurs, la premiere utilisée pour la couleur du texte, et la seconde pour la
couleur du fond.

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

Last update: 2023/01/27 16:08 start:raspberry:bash2 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash2

Couleur|Couleur texte Couleur fond
Noir 30 40

Rouge |31 41

Vert 32 42

Jaune |33 43

Bleu 34 44
Magenta|35 45

Cyan 36 46

Blanc |37 47

Exemple

echo -e '\033[1;30;47m toto \033[0;32m est sur \033[1;33m un bateau \033[Om'

Exemples et exercices

Comme indiqué dans la section liens de cette page, de trés bon exemples et exercices illustrent le
cours disponible sur cette page : Guide avancé d'écriture des scripts Bash - Une exploration en
profondeur de I'art de la programmation shell

Aux structures décrites ci-dessus, il est nécessaire, pour réaliser des scripts poussés, de connaitre les
commandes shell les plus usitées.
Vous en trouverez une présentation sur cette autre page du wiki : initiation_au_shell .

La programmation de script shell étant ouverte a tous, cela permet de bénéficier de nombreux scripts
pour des applications tres variées ; cependant, la plupart sont proposés sans aucune garantie.
Vous pourrez trouver une liste de scripts pouvant servir d'exemples sur la page scripts utiles du wiki.

Une fois vos armes faites, proposez vos contributions sur le topic du forum [VOS SCRIPTS UTILES] et
rajoutez un lien dans la page du wiki ci-dessus.

L'art d'écrire un script

 Des vérifications approfondies doivent étre effectuées sur TOUTES les commandes utilisées.

e Des commentaires détaillés doivent apparaitre lors de chaque étape. De méme, chaque étape
doit étre suivie d'un “echo <voici ce que je fais>" (particulierement utile notamment lors du
débogage).

e Lors d'une mise a jour, un fil de discussion doit étre précisé pour tracer les bugs éventuels.

 Avertir les utilisateurs des dégats que peuvent causer les commandes utilisées. (Ces deux
dernieres remarques ne concernent bien sdr que les scripts que I'on souhaite diffuser.)

e Commencer par :

#!/bin/bash
Version du script

 Créer des fonctions pour des actions précises :

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 08:33

https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:script_shell#liens
https://abs.traduc.org/abs-5.3-fr/apm.html
https://abs.traduc.org/abs-5.3-fr/apm.html
https://www.fablab37110.chanterie37.fr/doku.php?id=projets:ecole:scripting:initiation_au_shell
https://www.fablab37110.chanterie37.fr/doku.php?id=scripts_utiles
https://forum.ubuntu-fr.org/viewtopic.php?id=204074

2026/02/04 08:33 21/22 Introduction aux scripts shell

nom de la fonction

e Utiliser des chemins absolus pour les dossiers et des chemins relatifs pour les noms de fichiers :
$CHEMIN DU DOSSIER/$NOM DU FICHIER

» Utiliser les entrées de commandes pour les fonctions :
nom de la fonction $1 $2 $3

e Si votre script doit s'arréter a cause d'une erreur, d'une variable qui ne correspond pas a vos
attentes utiliser des numéros exit différents :

exit o
exit g
exit :

Ca permettra d'identifier d'ou vient I'erreur.

e Utiliser le tableau ${PIPESTATUS[@]} pour récupérer les états des autres commandes.
» On peut écrire une fonction d'erreur du type :

erreur

tab=(${PIPESTATUS[@]}

1i=0; 1i ${#tab[@]}; i++ : i+=1));
i ;
zenity --error --title="Une erreur est survenue" --text="Une
erreur est survenue "
exit

ainsi apres chague commande vous pouvez donner des codes d'exécutions différents.

\ ‘) Astuce : le plus important dans tout programme est I'algorithme utilisé.

Exemple : supposons que vous ayez une base de données, avec 3 catégories d'enregistrements
possibles : éléphant bleu, éléphant blanc, éléphant rose ayant chacun 30 individus. Votre script doit
compter le nombre d'éléphants bleus et blancs. Deux possibilités s'offrent a vous :

* calculer le nombre d'éléphants bleus + éléphants blancs

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

Last update: 2023/01/27 16:08 start:raspberry:bash2 https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash2

ou
e calculer le nombre total d'éléphants - nombre d'éléphants roses
Quel algorithme choisissez-vous ?

Résultat : le premier car dans le deuxieme il faut d'abord calculer le nombre total d'éléphants, donc

o0
un calcul en plus W7 .

Liens

e (fr) https://marcg.developpez.com/ksh/ : Pour ceux qui souhaitent aller plus loin dans la
conception de script shell.

* (fr) Guide avancé d'écriture des scripts Bash : Un tres bon tutoriel concernant la réalisation du
script shell. C'est I'un des plus complets et les mieux détaillés disponibles en francais. Il
contient également des exemples de script complets, une carte de référence (variables,
tests...). Ce site est un site qui vaut réellement le détour pour tous ceux qui cherchent a créer
des scripts complets en utilisant au mieux les performances du shell.

* (fr) https://openclassrooms.com/courses/reprenez-le-controle-a-l-aide-de-linux : Un tutoriel tres
complet pour linux qui comporte quelques parties sur la réalisation de scripts bash.

¢ (en) Bash parameters and parameter expansions. En anglais mais contient de nombreux
exemples concernant la gestion et I'analyse des parametres.

e (fr) Introduction a Bash

e (fr) http://www.scotchlinux.tuxfamily.org/ exemples de scripts bash, quelques trucs utiles (
fonctions, fonctions comme parametres...)

* (en) https://www.shellcheck.net/ Permet de corriger la syntaxe du script (parenthése oubliée,
graphie incorrecte d'une commande, un “if” sans son “fi”, un “while sans son “do” ou son
“done”, etc...).

Contributeurs: Gapz, Gloubiboulga ,sparky et deax_one

From:
https://www.fablab37110.chanterie37.fr/ - Castel'Lab le Fablab MJC de Chateau-
Renault

Permanent link:
https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash2

Last update: 2023/01/27 16:08

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 08:33

https://marcg.developpez.com/ksh/
https://abs.traduc.org/abs-fr/
http://abs.traduc.org/abs-5.3-fr/apa.html
http://abs.traduc.org/abs-5.3-fr/apb.html
https://openclassrooms.com/courses/reprenez-le-controle-a-l-aide-de-linux
http://www.ibm.com/developerworks/library/l-bash-parameters.html
ftp://ftp-developpez.com/eric-sanchis/IntroProgBash.pdf
http://www.scotchlinux.tuxfamily.org/
https://www.shellcheck.net/
https://www.fablab37110.chanterie37.fr/doku.php?id=utilisateurs:gapz
https://www.fablab37110.chanterie37.fr/doku.php?id=utilisateurs:gloubiboulga
https://www.fablab37110.chanterie37.fr/doku.php?id=utilisateurs:sparky
https://www.fablab37110.chanterie37.fr/doku.php?id=utilisateurs:deax_one
https://www.fablab37110.chanterie37.fr/
https://www.fablab37110.chanterie37.fr/doku.php?id=start:raspberry:bash2

	Introduction aux scripts shell
	Pour faire qu'un script soit exécutable
	Méthode graphique
	Problème connu

	Méthode dans un terminal
	Le chemin ./
	Les différents types de shells

	Les variables
	Les arguments en ligne de commande
	L'arithmétique

	Vocabulaire
	La commande test
	Opérateurs de test sur fichiers
	Opérateurs de comparaison numérique
	Les crochets
	Les opérateurs logiques
	Table de vérité de « -a »
	Table de vérité de « -o »

	La structure : `if`
	Explication

	Les structures while et until
	La structure case
	On mélange tout ça
	Remarque

	La structure for
	Les fonctions
	Extraire des sous-chaînes
	La couleur
	Présentation de la syntaxe
	Présentation des différentes valeurs Effet
	Présentation des différentes valeurs des couleurs
	Exemple

	Exemples et exercices
	L'art d'écrire un script
	Liens

