
2026/02/04 02:44 1/5 Bash Doc

Castel'Lab le Fablab MJC de Château-Renault - https://www.fablab37110.chanterie37.fr/

Bash Doc

Ko ou Kio ? Go ou Gio ?

A l’origine fût le bit pourvu d’une simple valeur 0 ou 1, puis ces bits furent agrégés, généralement par
8 pour former des octets (le « byte » anglophone).

Avec un octet on ne fait pas grand-chose, on ne stocke presque rien. Rapidement, les fabricants de
matériel ont fourni des mémoires, des disquettes, des disques pouvant contenir des milliers, des
millions d’octets. Naturellement, ils ont réutilisé les multiples déjà en vigueur, à savoir le kilo, le
méga, etc…

On a vu apparaitre alors le Ko (kilo-octets) et le Mo (méga-octets)…. seulement, les informaticiens
aimant les puissances de deux, le kilo-octets (Ko) des informaticiens ne faisait pas 1000 octets mais
1024 octets, car c’est la puissance de deux la plus proche de 1000 (1024 = 2 puissance 10). Dans le
même esprit, le méga-octets faisait 2 20 octets, soit 1.048.576 octets et non pas un million
d’octets. Les informaticiens ont donc réutilisé le kilo pour indiquer un multiple de 1024
alors que d’habitude un kilo signifie 1000 quelque chose (kilomètre, kilogramme…).
Pourquoi pas ? On s’est bien adapté… Mais en 1998 l’International Electrotechnical
Commission (IEC) a décidé qu’il fallait clarifier la situation. Ainsi de nouvelles unités ont
été créées : *le Kio qu’on prononce « kibi-octets » fait 1024 octets *le Mio qu’on prononce
« mébi-octets » fait 1024 * 1024 = 1.048.576 octets *de même pour le Gio (gibi-octets – on
ne rit pas !), le Tio (tébi-octets), etc… Résumons : 1 Ko = 1000 octets alors que 1 Kio =
1024 octets Quel est alors le problème ? Il est double : *tout d’abord, les manuels de vos
outils informatiques, de vos commandes (fdisk, parted, …) ont-ils été mis à jour ? Quand
vous lisez « Go » dans une page de doc, s’agit-il vraiment du multiple de 1000 ou bien est-
ce toujours le multiple de 1024 qui est sous-entendu ? En général, en l’absence de mise à
jour, les docs parlent en « multiples de 1024″ *par contre, les constructeurs de disque ne
se trompent pas eux : quand vous achetez un disque sur lequel on vous promet 1 To de
stockage, il faut bien comprendre 10 puissance 12 octets et non pas 2 puissance 40 octets
! On final, vous vous retrouvez avec 931 Mio environ ! On vous aura prévenu : ne criez pas
à l’arnaque…quoique…. ===== Commande Less ===== Less FR

https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:capture_d_ecran_du_2023-02-15_09-04-08.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:capture_d_ecran_du_2023-02-15_09-04-08.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:capture_d_ecran_du_2023-02-15_09-04-08.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:capture_d_ecran_du_2023-02-15_09-04-08.png
https://www.malekal.com/comment-utiliser-la-commande-less-sur-linux/#Rechercher_du_texte

Last update: 2023/02/19
15:34 start:linux:bash:doc https://www.fablab37110.chanterie37.fr/doku.php?id=start:linux:bash:doc&rev=1676817241

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 02:44

=====Changer les droits par défaut, la commande umask===== La commande umask (User Mask)
permet de changer les droits attribués par défaut. Elle prend en argument un masque constitué de
trois valeurs octales qui détermine les droits à supprimer lors de la création d’un fichier par rapport
aux droits qui lui sont attribués par défaut, à savoir 666 pour les fichiers ordinaires et 777 pour les
répertoires. Sur la plupart des systèmes le masque par défaut est 022, c’est-à-dire qu’il impose lors
de la création d’un fichier de ne pas attribuer le droit d’écriture (2) pour le groupe et pour les autres
utilisateurs. Ainsi, lors de la création d’un fichier ordinaire qui par défaut devrait avoir les droits 666
soit rw-rw-rw-, le masque 022 empêche de donner le droit w pour le groupe et les autres utilisateur et
le fichier est finalement créé avec les droits rw-r–r– , soit 644. De manière analogue, lors de la
création d’un répertoire qui devrait avoir les droits 777 soit rwxrwxrwx, le masque 022 a pour effet de
le créer avec les droits rwxr-xr-x soit 755. Plus précisément le système calcule les droits à affecter à
un nouveau fichier par une opération logique bit à bit entre le masque et les droits : étant donné un
masque M et des droits par défaut D, les droits attribués au fichier créé sont le résultat de l’opération
logique bit à bit NOT(M) AND D. Pour visualiser cette opération il est nécessaire d’écrire M et D dans
leur représentation binaire, chaque bit indiquant la présence (1) ou l’absence (0) d’un droit. Ainsi en
prenant comme masque M = 022 et comme droits par défaut D = 666 pour la création d’un fichier
ordinaire, on a : *• la représentation binaire de M : 000 010 010 (qui correspond aux droits ––w- -w- à
enlever) *• la représentation binaire de D : 110 110 110 (qui correspond aux droits rw- rw- rw-) *• la
négation bit à bit de M : NOT(M) = 111 101 101 *• et les droits attribués sont déterminés par
l’opération NOT(M) AND D qui donne 110 100 100 (qui correspond aux droits rw- r– r–) ^ ^ r ^ w ^ x
^ ^ r ^ w ^ x ^ ^ r ^ w ^ x ^ |M|0 |0 |0| | 0| 1| 0 || 0| 1| 0| |NOT(M)|1 |1 |1| | 1| 0| 1 || 1| 0| 1| |D|1 |1
|0| | 1| 1| 0 || 1| 1| 0| |NOT(M) AND D|1 |1 |0| | 1| 0| 0 || 1| 0| 0| En appliquant de manière analogue le
masque 022 à des droits par défaut 777 pour la création d’un répertoire on obtient les droits 755, soit

https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png

2026/02/04 02:44 3/5 Bash Doc

Castel'Lab le Fablab MJC de Château-Renault - https://www.fablab37110.chanterie37.fr/

rwxr-xr-x. Notez que, pour des raisons de sécurité, avec les droits par défaut 666 pour un fichier,
umask ne permet pas de créer des fichiers ordinaires exécutables. Après leur création, il vous faudra
ajouter explicitement les droits en exécution pour chaque fichier. C’est la raison qui explique pourquoi
les droits par défaut sont à 666 et non à 777 comme ceux des répertoires. Dans l’exemple suivant, on
crée un fichier ordinaire vide par la commande touch.

On peut voir sur cet exemple que le fichier fichier1 et le répertoire rep1 se voient attribuer les droits
par défaut déterminés par le masque 022. Après l’exécution de la commande umask 027, les
nouveaux fichiers et répertoires ont respectivement les droits 640 et 750, ce qu’on observe pour
fichier2 et rep2. Remarquons aussi que les droits des fichiers précédemment créés ne sont pas
modifiés. En effet, la commande umask n’a pas d’effet rétroactif. ====== Editeur vim======
editeurvim ====== Raccourci clavier Linux ====== ===== Déplacements ======= CTRL + a
⇒ place le curseur au début de la ligne CTRL + e ⇒ place le curseur à la fin de la ligne (End) CTRL + b
⇒ recule d’un caractère (Backward) CTRL + f ⇒ avance d’un caractère (Forward) Alt + b ⇒ recule d’un
mot i.e. place le curseur sur la première lettre du mot sur lequel se trouve le curseur Alt + f ⇒ avance
d’un mot i.e. place le curseur après la dernière lettre du mot sur lequel se trouve le curseur =====
Couper / Coller===== Dans les raccourcis suivants, la chaîne de caractères coupée est stockée dans
un presse-papier. CTRL + k ⇒ coupe la chaîne depuis le curseur jusqu’à la fin de la ligne (Kill) CTRL +
u ⇒ coupe la chaîne depuis le début de la ligne jusqu’au caractère qui précède le curseur CTRL + w ⇒
coupe la chaîne depuis le caractère qui précède le curseur jusqu’au début du mot (si le curseur est
placé à la fin d’un mot, coupe le mot) Alt + ←- ⇒ identique à CTRL + w Alt + d ⇒ coupe la chaîne
depuis le caractère situé sous le curseur jusqu’à la fin du mot (si le curseur est placé au début d’un
mot, coupe le mot) CTRL + y ⇒ colle la chaîne du presse-papier juste avant la position du curseur
===== Modification===== CTRL + t ⇒ inverse la position des deux caractères situés avant le
curseur (pratique quand on tape par exemple, sl au lieu de ls) Alt + t ⇒ inverse la position des deux
mots situés avant le curseur (pratique lorsqu’on a inversé deux arguments d’une commande) Alt + c
⇒ met en majuscule la lettre située sous le curseur et déplace le curseur à la fin du mot (en plaçant le
curseur au début d’un mot, met la première lettre en majuscule) Alt + l ⇒ met en minuscule toutes
les lettres depuis la position du curseur jusqu’à la fin du mot Alt + u ⇒ met en majuscule toutes les
lettres depuis la position du curseur jusqu’à la fin du mot (en plaçant le curseur au début d’un mot,
met le mot en majuscule) CTRL + _ ⇒ annule la dernière modification ===== Autres Raccourcis

https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/lib/exe/fetch.php?media=start:linux:bash:capture_d_ecran_du_2023-02-15_15-27-12.png
https://www.fablab37110.chanterie37.fr/doku.php?id=start:linux:bash:doc:vim

Last update: 2023/02/19
15:34 start:linux:bash:doc https://www.fablab37110.chanterie37.fr/doku.php?id=start:linux:bash:doc&rev=1676817241

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 02:44

===== CTRL + l ⇒ Permet d’effacer le contenu du terminal. (L minuscule) CTRL + c ⇒ En cours de
frappe, permet d’arrêter la saisie de la ligne de commande et de revenir à l’invite avec une ligne
vierge. ======= commande Echo ======= =====La commande echo===== <WRAP info
>Un signe $ précède les commandes qui ne nécessitent pas de droits administrateur ; un signe #
précède celles qui nécessitent des droits administrateur (ces signes ne font PAS partie des
commandes). Les lignes qui ne commencent pas par un signe $ ou # correspondent au résultat de la
commande précédente.
Les touches utilisées sont indiquées entre crochets, exemple [ctrl] pour la touche
“contrôle”</WRAP> <WRAP tip>Comme de nombreuses commandes basiques, echo peut
venir de plusieurs paquets. Elle peut par exemple être incluse dans votre shell (bash par
exemple), ou bien venir d'un paquet extérieur (core-utils par exemple), mais grosso modo,
elle aura le même comportement dans une utilisation basique.</WRAP> ====Utilisation
basique==== La commande echo permet simplement d'afficher une ligne. Son utilisation
est plutôt simple : <code>$ echo “Ma jolie phrase est belle.”</code> Ceci aura pour
conséquence d'afficher sur votre console “Ma jolie phrase est belle.”. Vous pouvez utiliser
les guillemets pour contrôler quelque peu le résultat de cette commande : * Avec un
guillemet simple de chaque côté du texte, rien ne sera modifié ou interprété par la
commande echo : <code>$ echo 'ca va ? oui !' ca va ? oui !</code> * Avec un guillemet
double de chaque côté du texte, le texte sera interprété par la commande echo ou par
votre shell, voici ce que j'obtiens (la commande n'arrive même pas à se lancer
correctement) : <code>$ echo “ca va ? oui !” bash: !“: event not found</code> * Notez
que vous pouvez aussi utiliser la commande sans guillemets, mais d'autres interprétations
pourront être effectuées (je rajoute par exemple le caractère * à mon texte, le contenu de
mon répertoire sera affiché : <code>$ echo ca va ? * oui ! ca va ? Desktop Documents
fichier1 fichier2 fichier3 oui ! </code> ====Quelques utilisations pratiques==== * Pour
écrire à la fin d'un fichier sans en écraser le contenu, on utilise les signes >> : <code>$
echo “Ma jolie phrase est belle.” » monfichier</code> * Pour écraser un fichier, en
effaçant tout son contenu, on utilise le signe > : <code>$ echo “Ma jolie phrase est belle.”
> monfichier</code> * Si vous utilisez “sudo” pour obtenir les droits root (comme sur
ubuntu par exemple), et que vous vouliez utiliser “echo” pour écrire dans un fichier qui
appartient à root, vous devrez ruser car le “sudo” ne survivra pas à la redirection. Ça sera
plus clair avec un exemple : Ne fonctionnera PAS :
<code>$ sudo echo 'www.nouveau_dépôt' » /etc/apt/sources.list</code> Vous obtiendrez
un refus avec “bash: /etc/apt/sources.list: Permission non accordée” comme motif. Pour
que ça fonctionne il faut utiliser un autre type de redirection, par exemple avec la
commande “tee” qui sert justement à ça.
Vous pouvez utiliser :

<code>$ echo 'www.nouveau_dépôt' | sudo tee -a /etc/apt/sources.list</code>
L'option “-a” indique à “tee” d'ajouter la ligne en fin de fichier, sinon le comportement par
défaut de “tee” est de remplacer le fichier cible. Ne pas l'oublier !
* Pour écrire plus d'une ligne avec “echo”, vous pouvez utiliser un saut de ligne, noté
“\n”. Pour indiquer à “echo” que ce symbole doit être interprété comme un saut de ligne,
il faut utiliser l'option “-e**” :

$ echo -e '#ceci est un commentaire \nma deuxième ligne' >>
/home/tux/test.txt

Vous obtiendrez dans le fichier ”/home/tux/test.txt“ le résultat suivant:

https://www.fablab37110.chanterie37.fr/lib/exe/detail.php?id=start%3Alinux%3Abash%3Adoc&media=wiki:travaux-article.png
https://www.fablab37110.chanterie37.fr/doku.php?id=ubuntu:ubuntu

2026/02/04 02:44 5/5 Bash Doc

Castel'Lab le Fablab MJC de Château-Renault - https://www.fablab37110.chanterie37.fr/

#ceci est un commentaire
ma deuxième ligne

Pratique pour ajouter une ligne d'option dans un fichier de configuration, et un commentaire explicatif
en même temps.

From:
https://www.fablab37110.chanterie37.fr/ - Castel'Lab le Fablab MJC de Château-Renault

Permanent link:
https://www.fablab37110.chanterie37.fr/doku.php?id=start:linux:bash:doc&rev=1676817241

Last update: 2023/02/19 15:34

https://www.fablab37110.chanterie37.fr/
https://www.fablab37110.chanterie37.fr/doku.php?id=start:linux:bash:doc&rev=1676817241

	Bash Doc
	Ko ou Kio ? Go ou Gio ?

