2026/01/24 04:32 1/8 PWM ESP32

PWM ESP32

PWM ESP32 EN

Une breve note sur ESP32 PWM

Le SoC ESP32 est entierement chargé de périphériques tres utiles et PWM en fait partie. Oui. Il existe
un bloc matériel dédié pour PWM dans le silicium de I'ESP32. La modulation de largeur d'impulsion ou
PWM en bref est une technique établie et largement utilisée pour la fourniture de puissance.

Vous pouvez utiliser le PWM d'ESP32 pour piloter des LED, des moteurs (moteurs a courant continu
normaux ainsi que des moteurs sans balais) et des lumiéres intelligentes. Le controleur PWM dans
ESP32 se compose de deux sous-modules principaux : Controle LED ou périphérique LEDC et
modulateur de largeur d'impulsion de contréle moteur ou périphérique MCPWM.

Méme si nous limiterons notre démonstration de PWM dans ESP32 a la décoloration d'une LED, il est
bon de connaitre le bloc Motor Control PWM (MCPWM) dans ESP32, avec des modules de capture
d'entrée.

Si vous avez déja travaillé avec des moteurs CC sans balais (BLDC), vous vous rendrez compte de
I'importance de détecter la position du rotor (a I'aide de capteurs a effet Hall) pour un contrdle précis
de la vitesse. Contréleur PWM LED ESP32 (LEDC)

Le périphérique LEDC de I'ESP32 se compose de 16 canaux PWM capables de générer des formes
d'onde indépendantes, principalement pour le controle des LED RVB, mais peut également étre utilisé
a d'autres fins.

[l'y a quelques points intéressants sur le controleur LED PWM dans ESP32 dont vous devez étre
conscient.

16 canaux PWM indépendants, divisés en groupe de deux avec 8 canaux par groupe.
Résolution programmable entre 1 bit et 16 bits.

La fréquence de I'onde PWM dépend de la résolution du PWM.

Augmente/diminue automatiquement le rapport cyclique sans intervention du processeur.

Configurer les canaux PWM d'ESP32
Vous souvenez-vous de la fonction ‘analogWrite()' dans la programmation Arduino ? C'est la fonction
responsable de la génération de PWM dans Arduino UNO (et d'autres cartes “Arduino”).

Etant donné que presque tout dans LED PWM d'ESP32 est configurable par I'utilisateur (canal,
résolution et fréquence), au lieu d'utiliser la fonction 'analogWrite ()', nous utiliserons un ensemble de
fonctions différent (et dédié) pour configurer PWM dans ESP32 .

Voici une liste de toutes les APl LEDC exposées par le pilote. Ces fonctions sont écrites pour le port
Arduino IDE d'ESP32.

* ledcSetup(canal, fréquence, resolution_bits);

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://www.electronicshub.org/esp32-pwm-tutorial/

Last update: 2023/01/27 16:08 start:esp32:pwm https://chanterie37.fr/fablab37110/doku.php?id=start:esp32:pwm

e |ledcAttachPin(broche, canal);
ledcWrite(canal, rapport cyclique);
ledcRead(canal);
ledcWriteTone(canal, fréquence);
ledcWriteNote(canal, note, octave);
ledcReadFreq(canal);
ledcDetachPin(broche);

Parmi les 8 fonctions, nous nous concentrerons sur les trois premieres, car elles sont plus utiles (et le
minimum requis) pour générer du PWM.

Quelques points importants a retenir lors de la configuration du canal PWM dans ESP32 :

e Comme il y a 16 canaux PWM, I'argument 'canal’ prend n'importe quelle valeur entre 0 et 15.

* Vient ensuite la fréquence du signal PWM. Vous pouvez définir la fréquence selon vos besoins,
comme 1 KHz, 5 KHz, 8 KHz et 10 KHz.

e La résolution du PWM est également configurable et ESP32 PWM peut étre programmé
n'importe ou entre 1 bit et 16 bits de résolution.

* La fréquence et la résolution PWM sont inversement proportionnelles et dépendent de la source
d'horloge. Soyez donc prudent lorsque vous sélectionnez les valeurs de fréquence et de
résolution.

e Enfin, attribuez une broche GPIO pour la sortie PWM. Vous pouvez attribuer n'importe quelle
broche GPIO, mais soyez prudent lors de I'attribution (n'utilisez pas de broches GPIO déja
utilisées comme UART, SPI, etc.).

Le tableau suivant montre quelques fréquences et résolutions PWM couramment utilisées.

Source d'horloge pour LEDC|Fréquence PWM LEDC Résolution PWM
80 MHz APB_CLK 1 KHz 16 bits
80 MHz APB_CLK 5 KHz 14 bits
80 MHz APB_CLK 10 KHz 13 bits
8MHz RTC8M_CLK 1 KHz 13 bits
8MHz RTC8M_CLK 8 KHz 10 bits
1MHz REF_TICK 1 KHz 10 bits

Fading LED utilisant PWM dans ESP32

Avec toutes les informations nécessaires sur PWM dans ESP32, nous pouvons maintenant procéder a
la mise en ceuvre de notre premier projet de décoloration d'une LED a I'aide de ESP32 PWM. C'est un
projet tres simple ou la luminosité d'une LED connectée a une broche GPIO d'ESP32 augmentera et
diminuera progressivement a plusieurs reprises. [Projets ESP32 pour débutants]

Ce projet consiste davantage a comprendre les fonctions LEDC : ledcSetup, ledcAttachPin et ledcWrite
et comment générer du PWM dans ESP32 que la LED qui s'estompe elle-méme. Composants requis

« Carte de développement ESP32 DevKit
3 LED de 5 mm

Résistance 220Q

3 potentiometres 5KQ

Planche a pain

Fils de connexion

https://chanterie37.fr/fablab37110/ Printed on 2026/01/24 04:32

2026/01/24 04:32 3/8 PWM ESP32

¢ Cable micro-USB

Schéma

L'image suivante montre la connexion pour la décoloration d'une LED a l'aide du contréleur ESP32
PWM.

=t
O

o
o
-9
%o
°e
&

D2

Code

Vous pouvez utiliser n'importe quelle broche GPIO pour émettre le signal PWM. Donc, j'utilise GPIO 16,
qui est également la broche RX UART2. Ensuite, nous devons configurer le canal LEDC en utilisant la
fonction 'ledcSetup'. Le premier argument est le canal. Toute valeur comprise entre 0 et 15 peut étre
donnée comme canal.

L'argument suivant est la fréquence. Vous pouvez fournir n'importe quelle fréquence, mais pour plus
de commodité, je définirai la fréquence sur 5 KHz. De plus, vous devez définir la résolution du PWM.
Cette valeur doit étre un nombre compris entre 1 et 16. Je suis allé avec une résolution de 10 bits.

Pour le reste des parametres, reportez-vous au code suivant, ou j'ai commenté les lignes importantes.

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

Last update: 2023/01/27 16:08 start:esp32:pwm https://chanterie37.fr/fablab37110/doku.php?id=start:esp32:pwm

pwmesp32led.ino

const int LEDPin 16 /* GPIO16 */

int dutyCycle

/* Setting PWM Properties */

const int PWMFreq 5000; /* 5 KHz */

const int PWMChannel 0

const int PWMResolution 10

const int MAX DUTY CYCLE int) (pow(2, PWMResolution 1
void setup

ledcSetup (PWMChannel, PWMFreq, PWMResolution
/* Attach the LED PWM Channel to the GPIO Pin */
ledcAttachPin(LEDPin, PWMChannel

void loop

/* Increasing the LED brightness with PWM */
dutyCycle = 0; dutyCycle MAX DUTY CYCLE; dutyCycle

ledcWrite (PWMChannel, dutyCycle
delay (3
//delayMicroseconds(100);

/* Decreasing the LED brightness with PWM */
dutyCycle = MAX DUTY CYCLE; dutyCycle 0; dutyCycle

ledcWrite (PWMChannel, dutyCycle
delay (3
//delayMicroseconds(100);

https://chanterie37.fr/fablab37110/ Printed on 2026/01/24 04:32

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:esp32:pwm&codeblock=0
http://www.opengroup.org/onlinepubs/009695399/functions/pow.html

2026/01/24 04:32 5/8 PWM ESP32

Vous pouvez connecter plusieurs broches GPIO au méme canal LEDC PWM. Si vous le
faites, toutes les broches GPIO partageront les propriétés du canal (résolution et
fréquence).

ESP32 PWM avec ADC

L'une des caractéristiques importantes de PWM dans ESP32 est que les 16 canaux peuvent étre
configurés indépendamment, c'est-a-dire que chaque canal peut avoir sa propre résolution et sa
propre fréquence. Pour le démontrer, utilisons le périphérique ADC et ajustons indépendamment le
rapport cyclique de trois canaux PWM LEDC différents en tournant un potentiometre.

Trois potentiometres 5KQ sont connectés a trois broches d'entrée ADC d'ESP32. Sur la base de la
sortie de I'ADC, nous définirons le rapport cyclique de trois canaux PWM, qui sont configurés avec des
parametres différents.

Pour faciliter la compréhension, j'ai connecté trois LED : ROUGE, VERT et BLEU a trois broches GPIO.
Ces trois broches GPIO sont attachées a trois canaux LEDC PWM différents et chaque canal est
initialisé avec sa propre fréquence et sa propre résolution.

LED |GPIO PinPWM Channel PWM Frequency PWM Resolution
RED | GPIO 16 0 5000 (5 KHz) 12

GREEN| GPIO 17 2 8000 (8 KHz) 13

BLUE | GPIO 4 4 10000 (10 KHz) 14

Un autre point important a retenir est que la résolution de I'ADC de I'ESP32 est de 12 bits. Nous
devons donc mapper cela avec soin sur la résolution PWM, pour obtenir la gamme compléte de
contrdle.

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

Last update: 2023/01/27 16:08 start:esp32:pwm https://chanterie37.fr/fablab37110/doku.php?id=start:esp32:pwm

Schéma

L'image suivante montre les connexions pour régler le rapport cyclique des canaux PWM a l'aide de
I'ADC (potentiometres).

5KQ |

|

-
r
[TT}

32 D35 D34 WVWN WP

4

220Q x 3

Vi

VYV

VIN GND D13 D2 D14 D2

&
0
o
O
0
0
0
o
0
L)
O
e
o
o
0o
0
@

pwmledPotentiometre.ino

const int redLEDPin /* GPI0O16 */
const int greenLEDPin /* GPIO17 */
const int blueLEDPin /* GPI0O4 */

uintle t redDutyCycle
uintlée t greenDutyCycle
uintle t blueDutyCycle

const
const
const
const

const
const
const
const

const
const

int
int
int
int

int
int
int
int

int
int

redPWMFreq /* 5 KHz */

redPWMChannel

redPWMResolution

RED MAX DUTY CYCLE int) (pow redPWMResolution

greenPWMFreq /* 8 KHz */

greenPWMChannel

greenPWMResolution

GREEN_ MAX DUTY_ CYCLE int) (pow greenPWMResolution

bluePWMFreq /* 10 KHz */
bluePWMChannel

https://chanterie37.fr/fablab37110/ Printed on 2026/01/24 04:32

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:esp32:pwm&codeblock=1
http://www.opengroup.org/onlinepubs/009695399/functions/pow.html
http://www.opengroup.org/onlinepubs/009695399/functions/pow.html

2026/01/24 04:32 7/8 PWM ESP32
const int bluePWMResolution 14
const int BLUE_MAX DUTY CYCLE int) (pow(2, bluePWMResolution 1

const int ADC_RESOLUTION = 4095; /* 12-bit */

void setup

/* Initialize Serial Port */

Serial.begin (115200

/* Initialize PWM Channels with Frequency and Resolution */
ledcSetup (redPWMChannel, redPWMFreq, redPWMResolution
ledcSetup (greenPWMChannel, greenPWMFreq, greenPWMResolution
ledcSetup (bluePWMChannel, bluePWMFreq, bluePWMResolution

/* Attach the LED PWM Channel to the GPIO Pin */
ledcAttachPin(redLEDPin, redPWMChannel
ledcAttachPin(greenLEDPin, greenPWMChannel
ledcAttachPin(blueLEDPin, bluePWMChannel

void loop

/* Read Analog Input from three ADC Inputs */

redDutyCycle = analogRead(AQ

greenDutyCycle = analogRead (A3

blueDutyCycle = analogRead(A4

/* Map ADC Output to maximum possible dutycycle */

//redDutyCycle = map(redDutyCycle, 0, ADC RESOLUTION, O,
RED MAX DUTY CYCLE);

greenDutyCycle = map(greenDutyCycle, 0, ADC RESOLUTION, 0O
GREEN_MAX DUTY CYCLE

blueDutyCycle = map(blueDutyCycle, O, ADC RESOLUTION, ©
BLUE MAX DUTY CYCLE

/* Set PWM Output of Channel with desired dutycycle */

ledcWrite(redPWMChannel, redDutyCycle

ledcWrite(greenPWMChannel, greenDutyCycle

ledcWrite(bluePWMChannel, blueDutyCycle

Serial.println("RED -- GREEN -- BLUE"
Serial.print(redDutyCycle
Serial.print(" -- "
Serial.print(greenDutyCycle
Serial.print(" -- "
Serial.print(blueDutyCycle
Serial.print("\n"

delay (1000

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

http://www.opengroup.org/onlinepubs/009695399/functions/pow.html

Last update: 2023/01/27 16:08 start:esp32:pwm https://chanterie37.fr/fablab37110/doku.php?id=start:esp32:pwm

i

From:
https://chanterie37.fr/fablab37110/ - Castel'Lab le Fablab MJC de Chateau-
Renault

Permanent link:
https://chanterie37.fr/fablab37110/doku.php?id=start:esp32:pwm

Last update: 2023/01/27 16:08

https://chanterie37.fr/fablab37110/ Printed on 2026/01/24 04:32

https://chanterie37.fr/fablab37110/
https://chanterie37.fr/fablab37110/doku.php?id=start:esp32:pwm

	PWM ESP32
	Une brève note sur ESP32 PWM
	Configurer les canaux PWM d'ESP32
	Fading LED utilisant PWM dans ESP32
	Schéma
	Code

	ESP32 PWM avec ADC
	Schéma

