2026/02/03 22:24 1/11 Allocation d'interruption

Allocation d'interruption

Traduction Google ...

Apercu

L'ESP32 a deux coeurs, avec 32 interruptions chacun. Chaque interruption a un certain niveau de
priorité, la plupart (mais pas toutes) les interruptions sont connectées au mux d'interruption.

Parce qu'il y a plus de sources d'interruption que d'interruptions, il est parfois logique de partager une
interruption dans plusieurs pilotes. L' esp_intr_alloc()abstraction existe pour masquer tous ces détails
d'implémentation.

Un pilote peut allouer une interruption pour un certain périphérique en appelant esp_intr_alloc()(ou
esp_intr_alloc_intrstatus()). Il peut utiliser les drapeaux passés a cette fonction pour définir le type
d'interruption alloué, en spécifiant un niveau particulier ou une méthode de déclenchement. Le code
d'allocation d'interruption trouvera alors une interruption applicable, utilisera le mux d'interruption
pour le connecter au périphérique et y installera le gestionnaire d'interruption et I'ISR donnés.

Ce code présente deux types d'interruptions différents, gérés différemment : les interruptions
partagées et les interruptions non partagées. Les plus simples sont les interruptions non partagées :
une interruption distincte est allouée par esp_intr_alloc()appel et cette interruption est uniquement
utilisée pour le périphérique qui lui est attaché, avec un seul ISR qui sera appelé. D'autre part, les
interruptions partagées peuvent étre déclenchées par plusieurs périphériques, plusieurs ISR étant
appelés lorsque I'un des périphériques connectés signale une interruption. Ainsi, les ISR destinés aux
interruptions partagées doivent vérifier I'état d'interruption du périphérique qu'ils desservent afin de
vérifier si une action est requise.

Les interruptions non partagées peuvent étre déclenchées par niveau ou front. Les interruptions
partagées ne peuvent étre que des interruptions de niveau en raison du risque d'interruptions
manquées lorsque des interruptions de front sont utilisées.

Par exemple, disons que DevA et DevB partagent une interruption. DevB signale une interruption,
donc la ligne INT passe au niveau haut. Le gestionnaire ISR appelle le code pour DevA mais ne fait
rien. Ensuite, le gestionnaire ISR appelle le code pour DevB, mais ce faisant, DevA signale une
interruption. L'ISR de DevB est terminé, il efface I'état d'interruption pour DevB et quitte le code
d'interruption. Maintenant, une interruption pour DevA est toujours en attente, mais parce que la
ligne INT n'est jamais descendue, comme DevA I'a maintenue haute méme lorsque l'interruption pour
DevB a été effacée, l'interruption n'est jamais desservie. Problemes multicoeurs(]

Les périphériques pouvant générer des interruptions peuvent étre divisés en deux types :

 Périphériques externes, dans I'ESP32 mais en dehors des cceurs Xtensa eux-mémes. La plupart
des périphériques ESP32 sont de ce type.

 Périphériques internes, faisant partie des coeurs du processeur Xtensa eux-mémes.

La gestion des interruptions differe Iégerement entre ces deux types de périphériques. Interruptions
périphériques internes[]

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

Last update: 2023/01/27 16:08 start:esp32:alloc_interrup https://www.fablab37110.chanterie37.fr/doku.php?id=start:esp32:alloc_interrup

Chaque cceur de processeur Xtensa possede son propre ensemble de six périphériques internes :

e Trois comparateurs de minuterie
e Un moniteur de performances

e Deux interruptions logicielles.

Les sources d'interruption internes sont définies dans esp_intr_alloc.h en tant que
ETS_INTERNAL * INTR_SOURCE.

Ces périphérigues ne peuvent étre configurés qu'a partir du coeur auquel ils sont associés. Lors de la
génération d'une interruption, I'interruption qu'ils génerent est cablée a leur coeur associé ; il n'est
pas possible, par exemple, qu'un comparateur de temporisation interne d'un cceur génere une
interruption sur un autre coeur. C'est pourquoi ces sources ne peuvent étre gérées qu'a l'aide d'une
tache exécutée sur ce noyau spécifique. Les sources d'interruption internes sont toujours attribuables
en utilisant esp_intr_alloc()normalement, mais elles ne peuvent pas étre partagées et auront toujours
un niveau d'interruption fixe (a savoir, celui associé au matériel avec le périphérique). Interruptions
périphériques externes[]

Les sources d'interruption restantes proviennent de périphériques externes. Ceux-ci sont définis dans
soc/soc.h comme ETS_* INTR_SOURCE.

Les emplacements d'interruption non internes dans les deux cceurs de processeur sont cablés a un
multiplexeur d'interruption, qui peut étre utilisé pour acheminer n'importe quelle source d'interruption
externe vers |'un de ces emplacements d'interruption.

L'allocation d'une interruption externe I'allouera toujours sur le cceur qui effectue I'allocation.

La libération d'une interruption externe doit toujours se produire sur le méme cceur sur lequel
elle a été allouée.

La désactivation et I'activation des interruptions externes a partir d'un autre cceur sont
autorisées.

Plusieurs sources d'interruption externes peuvent partager un slot d'interruption en le passant
ESP_INTR_FLAG_SHAREDcomme indicateur a esp_intr_alloc().

Des précautions doivent étre prises lors de I'appel esp_intr_alloc()a partir d'une tache qui n'est pas
épinglée a un noyau. Lors du changement de tache, ces taches peuvent migrer entre les coeurs. Par
conséquent, il est impossible de dire sur quel processeur l'interruption est allouée, ce qui rend difficile
la libération du handle d'interruption et peut également entrainer des difficultés de débogage. Il est
conseillé de l'utiliser xTaskCreatePinnedToCore()avec un argument CorelD spécifique pour créer des
taches qui alloueront des interruptions. Dans le cas de sources d'interruption internes, cela est
nécessaire. Gestionnaires d'interruptions IRAM-Safe[]

L' ESP_INTR_FLAG_IRAMindicateur enregistre un gestionnaire d'interruption qui s'exécute toujours a
partir de I'lRAM (et lit toutes ses données a partir de la DRAM), et n'a donc pas besoin d'étre désactivé
pendant les opérations d'effacement et d'écriture flash.

Ceci est utile pour les interruptions qui nécessitent une latence d'exécution minimale garantie, car les
opérations d'écriture et d'effacement flash peuvent étre lentes (les effacements peuvent prendre des
dizaines ou des centaines de millisecondes).

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/03 22:24

2026/02/03 22:24 3/11 Allocation d'interruption

[l peut également étre utile de conserver un gestionnaire d'interruptions dans IRAM s'il est appelé tres
fréquemment, pour éviter les ratés du cache flash.

Reportez-vous a la documentation de I'API flash SPI pour plus de détails. Plusieurs gestionnaires
partageant une source

Plusieurs gestionnaires peuvent étre affectés a une méme source, étant donné que tous les
gestionnaires sont alloués a I'aide du ESP_INTR_FLAG_SHAREDdrapeau. Ils seront tous affectés a
I'interruption, a laquelle la source est attachée, et appelés séquentiellement lorsque la source est
active. Les gestionnaires peuvent étre désactivés et libérés individuellement. La source est attachée a
I'interruption (activée), si un ou plusieurs gestionnaires sont activés, sinon détachée. Un gestionnaire
ne sera jamais appelé lorsqu'il est désactivé, tandis que sa source peut toujours étre déclenchée si
I'un de ses gestionnaires est activé.

Les sources attachées a une interruption non partagée ne prennent pas en charge cette
fonctionnalité.

Bien que le framework prenne en charge cette fonctionnalité, vous devez I'utiliser avec beaucoup de
prudence . Il existe généralement deux manieres d'empécher le déclenchement d'une interruption :
désactiver la source ou masquer I'état de I'interruption périphérique . IDF ne gere que l'activation et
la désactivation de la source elle-méme, laissant les bits d'état et de masque a la charge des
utilisateurs. Les bits d'état doivent soit étre masqués avant que le gestionnaire qui en est responsable
ne soit désactivé, soit étre masqués puis correctement traités dans une autre interruption activée .
Veuillez noter que le fait de laisser certains bits d'état non gérés sans les masquer, tout en
désactivant les gestionnaires correspondants, entrainera le déclenchement indéfini de la ou des
interruptions, entrainant ainsi un plantage du systeme.

Référence API

En téte de fichier
e composants/esp_hw_support/include/esp_intr_alloc.h
Les fonctions
esp_err_t esp_intr_mark_shared (int intno , int cpu, bool is_in_iram)

» Marquez une interruption comme une interruption partagée.

e Cela marquera une certaine interruption sur le processeur spécifié comme une interruption
pouvant étre utilisée pour connecter des gestionnaires d'interruptions partagés.

e Parametres

1. -intno - Le numéro de l'interruption (0-31)

. -cpu - CPU sur lequel l'interruption doit étre marquée comme partagée (0 ou 1)

3. -is_in_iram - L'interruption partagée est destinée aux gestionnaires qui résident dans I''RAM et
I'int peut étre laissé activé pendant que le cache flash est désactivé.

N

ESP_ERR_INVALID_ARG si cpu ou intno est invalide ESP_OK sinon

esp_err_t esp_intr_reserve (int intno, int cpu)

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

Last update: 2023/01/27 16:08 start:esp32:alloc_interrup https://www.fablab37110.chanterie37.fr/doku.php?id=start:esp32:alloc_interrup

e Réservez une interruption a utiliser en dehors de ce cadre.

» Cela marquera une certaine interruption sur le processeur spécifié comme réservée, a ne pas
allouer pour quelque raison que ce soit.

Parametres

e intno - Le numéro de I'interruption (0-31)
e cpu - CPU sur lequel l'interruption doit étre marquée comme partagée (0 ou 1)

e ESP_ERR_INVALID_ARG si cpu ou intno est invalide ESP_OK sinon

esp_err_t esp_intr_alloc (int source , int flags , intr_handler_t handler, void * arg , intr_handle_t *
ret_handle) []

« Allouer une interruption avec les parametres donnés.

 Cela trouve une interruption qui correspond aux restrictions indiquées dans le paramétre flags,
y mappe la source d'interruption donnée et connecte également le gestionnaire d'interruption
donné (avec un argument facultatif). Si nécessaire, il peut également renvoyer un handle pour
I'interruption.

« L'interruption sera toujours allouée sur le noyau qui exécute cette fonction.

e Si l'indicateur ESP_INTR_FLAG_IRAM est utilisé et que I'adresse du gestionnaire n'est pas dans
IRAM ou RTC_FAST_MEM, alors ESP_ERR_INVALID_ARG est renvoyé.

Parametres

e source - La source d'interruption. L'une des sources de multiplexage d'interruption
ETS * INTR_SOURCE, comme défini dans soc/soc.h, ou I'une des sources internes
ETS_INTERNAL * INTR_SOURCE comme défini dans cet en-téte.

* flags - Un masque ORred de ESP_INTR_FLAG_* définit. Celles-ci limitent le choix des
interruptions parmi lesquelles cette routine peut choisir. Si cette valeur est 0, il allouera par
défaut une interruption non partagée de niveau 1, 2 ou 3. S'il s'agit de
ESP_INTR_FLAG_SHARED, il allouera une interruption partagée de niveau 1. Le réglage
ESP_INTR_FLAG_INTRDISABLED reviendra de cette fonction avec I'interruption désactivée .

e handler - Le gestionnaire d'interruptions. Doit étre NULL lorsqu'une interruption de niveau >3
est demandée, car ces types d'interruptions ne sont pas appelables en C.

e arg - Argument facultatif pour passé au gestionnaire d'interruption

* ret_handle - Pointeur vers un intr_handle_t pour stocker un handle qui peut ensuite étre utilisé
pour demander des détails ou libérer I'interruption. Peut étre NULL si aucun handle n'est requis.

e ESP_ERR_INVALID_ARG si la combinaison d'arguments est invalide. ESP_ERR_NOT_FOUND
Aucune interruption libre trouvée avec les drapeaux spécifiés ESP_OK sinon

esp_err_t esp_intr_alloc_intrstatus (int source, int flags , uint32_t intrstatusreg , uint32_t
intrstatusmask , intr_handler_t handler, void * arg , intr_handle_t * ret_handle)]

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/03 22:24

2026/02/03 22:24 5/11 Allocation d'interruption

Allouer une interruption avec les parametres donnés.

* Cela fait essentiellement la méme chose que esp_intr_alloc, mais permet de spécifier un combo
registre et masque. Pour les interruptions partagées, le gestionnaire n'est appelé que si une
lecture du registre spécifié, ANDed avec le masque, renvoie non nul. En transmettant une
adresse de registre d'état d'interruption et un masque d'adaptation, cela peut étre utilisé pour
accélérer la gestion des interruptions dans le cas ou une interruption partagée est déclenchée ;
en vérifiant d'abord les statuts d'interruption, le code peut décider quels ISR peuvent étre
ignores

e source - La source d'interruption. L'une des sources de multiplexage d'interruption
ETS * INTR_SOURCE, comme défini dans soc/soc.h, ou I'une des sources internes
ETS_INTERNAL * INTR_SOURCE comme défini dans cet en-téte.

e flags - Un masque ORred de ESP_INTR_FLAG_* définit. Celles-ci limitent le choix des
interruptions parmi lesquelles cette routine peut choisir. Si cette valeur est 0, il allouera par
défaut une interruption non partagée de niveau 1, 2 ou 3. S'il s'agit de
ESP_INTR_FLAG_SHARED, il allouera une interruption partagée de niveau 1. Le réglage
ESP_INTR_FLAG_INTRDISABLED reviendra de cette fonction avec l'interruption désactivée .

e intrstatusreg - L'adresse d'un registre d'état d'interruption

e intrstatusmask - Un masque. Si une lecture de |'adresse intrstatusreg a I'un des bits qui sont 1
dans le jeu de masques, I'ISR sera appelé. Sinon, il sera ignoré.

 handler - Le gestionnaire d'interruptions. Doit étre NULL lorsqu'une interruption de niveau >3
est demandée, car ces types d'interruptions ne sont pas appelables en C.

e arg - Argument facultatif pour passé au gestionnaire d'interruption

e ret_handle - Pointeur vers un intr_handle_t pour stocker un handle qui peut ensuite étre utilisé
pour demander des détails ou libérer I'interruption. Peut étre NULL si aucun handle n'est requis.

e ESP ERR _INVALID ARG si la combinaison d'arguments est invalide. ESP_ERR_NOT_FOUND
Aucune interruption libre trouvée avec les drapeaux spécifiés ESP_OK sinon

esp_err_t esp_intr_free (intr_handle_t handle) [J

Désactiver et libérer une interruption.

e Utilisez un handle d'interruption pour désactiver I'interruption et libérer les ressources qui lui
sont associées. Si le coeur actuel n'est pas le coeur qui a enregistré cette interruption, cette
routine sera affectée au cceur qui a alloué cette interruption, bloquant et attendant jusqu'a ce
que la ressource soit libérée avec succes.

Lorsque le gestionnaire partage sa source avec d'autres

& gestionnaires, les bits d'état d'interruption dont il est

responsable doivent étre gérés correctement avant de le libérer.

voir esp _intr _disablepour plus de détails. Veuillez ne pas
appeler cette fonction dans esp ipc call blocking.

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

Last update: 2023/01/27 16:08 start:esp32:alloc_interrup https://www.fablab37110.chanterie37.fr/doku.php?id=start:esp32:alloc_interrup

Parameétres

* handle - Le handle, tel qu'obtenu par esp_intr_alloc ou esp_intr_alloc_intrstatus

e ESP_ERR _INVALID_ARG le handle est NULL ESP_FAIL n'a pas réussi a libérer ce handle ESP_OK
sinon

int esp_intr_get cpu (intr_handle_t handle) [J
Obtenir le numéro de CPU auquel une interruption est liée.

Parametres
e handle - Le handle, tel qu'obtenu par esp_intr_alloc ou esp_intr_alloc_intrstatus

Le numéro de ceur ou l'interruption est allouée

int esp_intr_get_intno (intr_handle_t handle) [J
Obtenir l'interruption allouée pour un certain handle.
Parametres

handle — Le handle, tel qu'obtenu par esp intr alloc ou

esp _intr alloc intrstatus
Retour

Le numéro d'interruption

esp_err_t esp_intr_disable (intr_handle_t handle)]
Désactiver l'interruption associée au handle.
Noter

Pour les interruptions locales (sources ESP INTERNAL *), cette
fonction doit étre appelée sur le CPU auquel 1'interruption est allouée.
D'autres interruptions n'ont pas une telle restriction.

Lorsque plusieurs gestionnaires partagent une méme source
d'interruption, les bits d'état d'interruption, qui sont gérés dans le
gestionnaire a désactiver, doivent étre masqués avant la désactivation ou
gérés correctement dans d'autres interruptions activées. L'absence de
gestion de 1'état d'interruption entrainera des appels d'interruption
infinis et finalement un plantage du systeme.

Parametres

handle — Le handle, tel qu'obtenu par esp intr alloc ou
esp_intr _alloc intrstatus

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/03 22:24

2026/02/03 22:24 7/11 Allocation d'interruption

Retour

ESP ERR INVALID ARG si la combinaison d'arguments est invalide. ESP 0K
sinon

esp_err_t esp_intr_enable (intr_handle_t handle)]

Activez 1'interruption associée au handle.

Noter

Pour les interruptions locales (sources ESP INTERNAL *), cette fonction
doit étre appelée sur le CPU auquel 1'interruption est allouée. D'autres
interruptions n'ont pas une telle restriction.

Parametres

handle — Le handle, tel qu'obtenu par esp intr alloc ou

esp _intr alloc intrstatus

Retour

ESP_ERR INVALID ARG si la combinaison d'arguments est invalide. ESP_OK
sinon

esp_err_t esp_intr_set in_iram (intr_handle_t handle , bool is_in_iram) []
Définissez le statut "in IRAM" du gestionnaire.
Noter
Ne fonctionne pas sur les interruptions partagées.
Parametres

handle — Le handle, tel qu'obtenu par esp intr alloc ou
esp _intr alloc intrstatus

is in iram — Indique si le gestionnaire associé a ce handle réside
dans IRAM. Les gestionnaires résidant dans IRAM peuvent étre appelés lorsque
le cache est désactivé.

Retour

ESP_ERR INVALID ARG si la combinaison d'arguments est invalide. ESP_OK
sinon

void esp_intr_noniram_disable (void)]

Désactivez les interruptions qui ne sont pas spécifiquement marquées comme

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

Last update: 2023/01/27 16:08 start:esp32:alloc_interrup https://www.fablab37110.chanterie37.fr/doku.php?id=start:esp32:alloc_interrup

s'exécutant a partir d'IRAM.
void esp_intr_noniram_enable (void)]
Réactivez les interruptions désactivées par esp intr noniram disable.
void esp_intr_enable_source (int inum)
activer la source d'interruption en fonction de son numéro
Parametres
inum - numéro d'interruption de 0 a 31
void esp_intr_disable_source (int inum)]
désactiver la source d'interruption en fonction de son numéro
Parametres
inum - numéro d'interruption de 0 a 31
statique en ligne int esp_intr_flags to_level (drapeaux int)]
Obtenez le niveau d'interruption le plus bas a partir des drapeaux.
Parametres

flags - Les mémes drapeaux qui passent a 1'
esp intr alloc intrstatusAPI

Macros[]
ESP_INTR_FLAG_LEVEL1[]

Indicateurs d'allocation d'interruption.

Ces drapeaux peuvent étre utilisés pour spécifier les qualités
d'interruption dont le code appelant esp intr alloc* a besoin. Accepter un
vecteur d'interruption de niveau 1 (priorité la plus basse)
ESP_INTR_FLAG_LEVEL2[]

Acceptez un vecteur d'interruption de niveau 2.

ESP_INTR_FLAG_LEVEL3[]

Acceptez un vecteur d'interruption de niveau 3.

ESP_INTR_FLAG_LEVELA[]

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/03 22:24

2026/02/03 22:24 9/11 Allocation d'interruption

Acceptez un vecteur d'interruption de niveau 4.
ESP_INTR_FLAG_LEVEL5[]

Acceptez un vecteur d'interruption de niveau 5.
ESP_INTR _FLAG_LEVEL6[]

Acceptez un vecteur d'interruption de niveau 6.
ESP_INTR_FLAG_NMI[]

Accepter un vecteur d'interruption de niveau 7 (priorité la plus élevée)
ESP_INTR_FLAG_SHARED[]

L'interruption peut étre partagée entre les ISR.
ESP_INTR_FLAG_EDGE[]

Interruption déclenchée par le front.
ESP_INTR_FLAG_IRAM[]

ISR peut étre appelé si le cache est désactivé.
ESP_INTR_FLAG_INTRDISABLED[]

Retour avec cette interruption désactivée.
ESP_INTR_FLAG_LOWMED[]

Interruptions a priorité faible et moyenne. Ceux-ci peuvent étre traités
en C.

ESP_INTR_FLAG_HIGH[]

Interruptions de haut niveau. Doit étre manipulé lors du montage.
ESP_INTR_FLAG_LEVELMASK[]

Masque pour tous les drapeaux de niveau.
ETS_INTERNAL TIMERO_INTR_SOURCE[]

Source d'interruption du temporisateur de plate-forme 0.

Les fonctions esp intr alloc* peuvent allouer un int pour toutes les
sources d'interruption ETS * INTR SOURCE qui sont acheminées via le mux

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

Last update: 2023/01/27 16:08 start:esp32:alloc_interrup https://www.fablab37110.chanterie37.fr/doku.php?id=start:esp32:alloc_interrup

d'interruption. OQutre ces sources, chaque ceur possede également des sources
internes qui ne passent pas par le mux d'interruption. Pour allouer une
interruption a ces sources, passez ces pseudo-sources aux fonctions.
ETS _INTERNAL TIMER1 INTR_SOURCE[]

Source d'interruption de la minuterie 1 de la plate-forme.
ETS_INTERNAL TIMER2_INTR_SOURCE[]

Source d'interruption de la minuterie 2 de la plate-forme.
ETS_INTERNAL_SWO_INTR_SOURCE[]

Logiciel int source 1.
ETS_INTERNAL_SW1_INTR_SOURCE[]

Logiciel int source 2.
ETS_INTERNAL PROFILING_INTR_SOURCE[]

Int source pour le profilage.
ETS_INTERNAL_UNUSED_INTR_SOURCE[]

L'interruption n'est affectée a aucune source.

ETS_INTERNAL_INTR_SOURCE_OFF[]

Fournit a SystemView des ID IRQ positifs, sinon les événements du
planificateur ne s'affichent pas correctement

ESP_INTR_ENABLE (numéro)]

Activer 1'interruption par numéro d'interruption
ESP_INTR_DISABLE (nombre)]

Désactiver l'interruption par numéro d'interruption

Définitions des types[]

typedef void (* intr_handler_t) (void * arg) [J
Prototype de fonction pour la fonction de gestionnaire d'interruption

typedef struct intr_handle_data_t intr_handle_data_t []

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/03 22:24

2026/02/03 22:24 11/11 Allocation d'interruption

Structure de données associée au gestionnaire d'interruptions
typedef intr_handle_data_t * intr_handle_t []

Handle vers un gestionnaire d'interruption

From:
https://www.fablab37110.chanterie37.fr/ - Castel'Lab le Fablab MJC de Chateau-

Renault

Permanent link:
https://www.fablab37110.chanterie37.fr/doku.php?id=start:esp32:alloc_interrup

Last update: 2023/01/27 16:08

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

https://www.fablab37110.chanterie37.fr/
https://www.fablab37110.chanterie37.fr/doku.php?id=start:esp32:alloc_interrup

	Allocation d'interruption
	Aperçu
	Référence API
	Paramètres
	Allouer une interruption avec les paramètres donnés.
	Désactiver et libérer une interruption.
	Obtenir le numéro de CPU auquel une interruption est liée.

