2026/02/01 20:59 1/7 Ecrire une bibliothéque pour Arduino

Ecrire une bibliotheque pour Arduino

Traduit de la page : https://www.arduino.cc/en/Hacking/LibraryTutorial

Ce document expligue comment créer une bibliothéque pour Arduino. Il commence par un croquis du
code Morse clignotant et explique comment convertir ses fonctions en bibliothéque. Cela permet a
d'autres personnes d'utiliser facilement le code que vous avez écrit et de le mettre a jour facilement a
mesure que vous améliorez la bibliotheque.

Pour plus d'informations, consultez le guide de style API pour obtenir des informations sur la création
d'une bonne API de style Arduino pour votre bibliotheque.

Nous commencons par un croquis qui fait du code Morse simple:

codemorse001.ino

broche int
void setup

pinMode pin OUTPUT
boucle

vide point point point tiret tiret
tiret point point point

retard

void dot

digitalWrite (pin , HIGH
retard

digitalWrite (broche , LOW
retard

void dash

digitalWrite (pin , HIGH
retard

digitalWrite broche LOW
retard

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://www.arduino.cc/en/Hacking/LibraryTutorial
https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:librairies:creation&codeblock=0

Last update: 2023/01/27

16:08 start:arduino:librairies:creation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:librairies:creation

Si vous exécutez ce croquis, il clignotera le code pour SOS (un appel de détresse) sur la broche 13.
L'esquisse comporte quelques parties différentes que nous devrons apporter dans notre bibliotheque.
Premierement, bien sir, nous avons les fonctions dot () et dash () qui clignotent.

Deuxiemement, il y a la variable ledPin que les fonctions utilisent pour déterminer la broche a utiliser.

Enfin, il y a I'appel a pinMode () qui initialise la broche en tant que sortie.

Commencons a transformer le croguis en bibliotheque!

Vous avez besoin d'au moins deux fichiers pour une bibliotheque: un fichier d'en-téte (avec
I'extension .h) et le fichier source (avec I'extension .cpp). Le fichier d'en-téte a des définitions pour la
bibliotheque: essentiellement une liste de tout ce qui se trouve a l'intérieur; tandis que le fichier
source a le code réel. Nous appellerons notre bibliotheque “Morse”, donc notre fichier d'en-téte sera
Morse.h. Jetons un coup d'ceil a ce qui s'y passe. Cela peut sembler un peu étrange au début, mais
cela aura plus de sens une fois que vous verrez le fichier source qui va avec.

Le coeur du fichier d'en-téte se compose d'une ligne pour chaque fonction de la bibliotheque,
enveloppée dans une classe avec toutes les variables dont vous avez besoin:

classMorse.ino

class Morse

public
Morse int pin point
vide tiret
vide
privé
int pin

Une classe est simplement une collection de fonctions et de variables qui sont toutes conservées
ensemble au méme endroit. Ces fonctions et variables peuvent étre publiques , ce qui signifie qu'elles
sont accessibles aux personnes utilisant votre bibliotheque, ou privées , ce qui signifie qu'elles ne
sont accessibles qu'a partir de la classe elle-méme. Chaque classe a une fonction spéciale appelée
constructeur , qui est utilisée pour créer une instance de la classe. Le constructeur a le méme nom
gue la classe et aucun type de retour.

Vous avez besoin de quelques autres éléments dans le fichier d'en-téte. L'une est une instruction
#include qui vous donne acces aux types et constantes standard du langage Arduino (cela est
automatiguement ajouté aux esquisses normales, mais pas aux bibliotheques). Cela ressemble a ceci
(et va au-dessus de la définition de classe donnée précédemment):

#include "Arduino.h"

//Enfin, il est courant d'envelopper tout le fichier d'en-téte dans une

https://chanterie37.fr/fablab37110/ Printed on 2026/02/01 20:59

https://chanterie37.fr/fablab37110/doku.php?do=export_code&id=start:arduino:librairies:creation&codeblock=1

2026/02/01 20:59 3/7 Ecrire une bibliothéque pour Arduino

construction étrange:

#ifndef Morse h
#define Morse h

// l'instruction et le code #include vont ici

#endif

Fondamentalement, cela évite les problemes si quelqu'un # inclut accidentellement votre
bibliothéque deux fois.

Enfin, vous mettez généralement un commentaire en haut de la bibliothéque avec son nom, une
breve description de ce qu'elle fait, qui I'a écrit, la date et la licence.

Jetons un coup d'ceil au fichier d'en-téte complet:

Morse.h Bibliotheque pour faire clignoter le code Morse.
Créé par David A. Mellis novembre
Relaché dans le domaine public.

#ifndef Morse h
#define Morse h

#include la
classe "Arduino.h" Morse

public
Morse (int pin point
vide tiret
vide
privé
int pin

#fin si

Passons maintenant en revue les différentes parties du fichier source, Morse.cpp.

Viennent d'abord quelques déclarations #include. Celles-ci donnent au reste du code acces aux
fonctions Arduino standard et aux définitions de votre fichier d'en-téte:

#include "Arduino.h"
#include "Morse.h"

Puis vient le constructeur. Encore une fois, cela explique ce qui doit se passer lorsque quelqu'un crée
une instance de votre classe. Dans ce cas, I'utilisateur spécifie la broche qu'il souhaite utiliser. Nous
configurons la broche en tant que sortie, enregistrez-la dans une variable privée pour une utilisation
dans les autres fonctions:

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

Last update: 2023/01/27
16:08

start:arduino:librairies:creation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:librairies:creation

Morse Morse int pin

pinMode (pin , OUTPUT
_pin = broche

ll'y a quelques choses étranges dans ce code. Le premier est le Morse :: avant le nom de la fonction.
Cela dit que la fonction fait partie de la classe Morse . Vous le verrez a nouveau dans les autres
fonctions de la classe. La deuxieme chose inhabituelle est le trait de soulignement dans le nom de
notre variable privée, pin . Cette variable peut en fait avoir le nom de votre choix, a condition qu'elle
corresponde a la définition du fichier d'en-téte. L'ajout d'un trait de soulignement au début du nom
est une convention courante pour indiquer clairement quelles variables sont privées, et aussi pour

distinguer le nom de celui de I'argument de la fonction (pin dans ce cas).

Vient ensuite le code réel du croquis que vous transformez en bibliotheéque (enfin!). Cela ressemble a
peu pres au méme, sauf avec Morse :: devant les noms des fonctions, et pin au lieu de pin :

void Morse dot

digitalWrite (pin , HIGH

retard
digitalWrite (pin
retard

void Morse dash

digitalWrite (pin
retard

digitalWrite (pin FAIBLE

retard

LOW

HIGH

Enfin, il est courant d'inclure également I'en-téte de commentaire en haut du fichier source. Voyons le

tout:

Morse.cpp - Bibliothéque pour faire clignoter le code Morse.

Créé par David A. Mell

#include "Arduino.h"
#include "Morse.h"

Morse Morse (int pin

pinMode pin OUTPUT
_pin broche

is

novembre
Relaché dans le domaine public.

https://chanterie37.fr/fablab37110/

Printed on 2026/02/01 20:59

2026/02/01 20:59 5/7 Ecrire une bibliothéque pour Arduino

void Morse dot

digitalWrite (pin , HIGH
retard
digitalWrite (pin , LOW
retard

void Morse dash

digitalWrite (pin , HIGH
retard
digitalWrite (pin , LOW
retard

Et c'est tout ce dont vous avez besoin (il y a d'autres trucs optionnels intéressants, mais nous en
reparlerons plus tard). Voyons comment vous utilisez la bibliotheque.

Tout d'abord, créez un répertoire Morse dans le sous-répertoire des bibliotheques de votre répertoire
de carnet de croquis. Copiez ou déplacez les fichiers Morse.h et Morse.cpp dans ce répertoire. Lancez
maintenant I'environnement Arduino. Si vous ouvrez le menu Sketch> Import Library , vous devriez
voir Morse a l'intérieur. La bibliotheque sera compilée avec les croquis qui l'utilisent. Si la bibliotheque
ne semble pas se construire, assurez-vous que les fichiers se terminent vraiment par .cpp et .h (sans
extension .pde ou .txt supplémentaire, par exemple).

Voyons comment nous pouvons répliquer notre ancienne esquisse SOS en utilisant la nouvelle
bibliotheque:

#include <Morse.h>
Morse morse

void setup

void loop
morse. point morse. point morse. point
morse. tiret morse. tiret morse. tiret
morse. point morse.point morse. point
retard

Il'y a quelques différences avec I'ancienne esquisse (outre le fait qu'une partie du code a été
déplacée vers une bibliotheque).

Tout d'abord, nous avons ajouté une instruction #include en haut de I'esquisse. Cela rend la
bibliotheque Morse disponible pour I'esquisse et I'inclut dans le code envoyé au tableau. Cela signifie

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

Last update: 2023/01/27

16:08 start:arduino:librairies:creation https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:librairies:creation

que si vous n'avez plus besoin d'une bibliotheque dans une esquisse, vous devez supprimer
I'instruction #include pour économiser de I'espace.

Deuxiemement, nous créons maintenant une instance de la classe Morse appelée morse :
Morse morse

Lorsque cette ligne est exécutée (ce qui se produit en fait méme avant la fonction setup ()), le
constructeur de la classe Morse sera appelé et passera I'argument que vous avez donné ici (dans ce
cas, seulement 13).

Notez que notre setup () est maintenant vide; c'est parce que |'appel a pinMode () se produit a
I'intérieur de la bibliotheque (lorsque l'instance est construite).

Enfin, pour appeler les fonctions dot () et dash () , nous devons les préfixer avec morse. - le nom de
I'instance que nous voulons utiliser. Nous pourrions avoir plusieurs instances de la classe Morse,
chacune sur sa propre broche stockée dans la variable privée pin de cette instance. En appelant une
fonction sur une instance particuliere, nous spécifions les variables d'instance a utiliser lors de cet
appel a une fonction. Autrement dit, si nous avions les deux:

Morse morse
Morse morse?2

puis a l'intérieur d'un appel a morse2.dot (), _pin serait 12.

Si vous avez essayé la nouvelle esquisse, vous avez probablement remarqué que rien de notre
bibliotheque n'était reconnu par I'environnement et mis en évidence en couleur. Malheureusement, le
logiciel Arduino ne peut pas automatiquement déterminer ce que vous avez défini dans votre
bibliotheque (méme si ce serait une fonctionnalité intéressante a avoir), vous devez donc lui donner
un peu d'aide. Pour ce faire, créez un fichier appelé keywords.txt dans le répertoire Morse. Ca devrait
ressembler a ¢a:

Morse KEYWORD1
tiret KEYWORD2
dot KEYWORD2

Chaque ligne porte le nom du mot-clé, suivi d'une tabulation (pas d'espaces), suivi du type de mot-
clé. Les classes doivent étre KEYWORDL1 et sont de couleur orange; les fonctions doivent étre
KEYWORD?2 et seront marron. Vous devrez redémarrer I'environnement Arduino pour qu'il reconnaisse
les nouveaux mots-clés.

Il est également agréable de fournir aux gens un exemple de croquis qui utilise votre bibliotheque.
Pour ce faire, créez un répertoire d' exemples dans le répertoire Morse . Ensuite, déplacez ou copiez
le répertoire contenant le sketch (appelons-le SOS) que nous avons écrit ci-dessus dans le répertoire
des exemples. (Vous pouvez trouver I'esquisse en utilisant la commande Sketch> Show Sketch Folder
.) Si vous redémarrez I'environnement Arduino (c'est la derniére fois, je vous le promets) - vous verrez
un élément Library-Morse dans le menu Fichier> Sketchbook> Exemples contenant votre exemple.
Vous voudrez peut-étre ajouter des commentaires qui expliquent mieux comment utiliser votre
bibliotheque.

Si vous souhaitez consulter la bibliotheque complete (avec mots-clés et exemple), vous pouvez la

https://chanterie37.fr/fablab37110/ Printed on 2026/02/01 20:59

2026/02/01 20:59 717 Ecrire une bibliothéque pour Arduino

télécharger: Morse.zip .

C'est tout pour le moment, mais j'écrirai probablement bientot un tutoriel de bibliotheque avancé. En
attendant, si vous avez des problémes ou des suggestions, veuillez les publier sur le forum de
développement de logiciels .

Pour plus d'informations, consultez le guide de style API pour obtenir des informations sur la création
d'une bonne API de style Arduino pour votre bibliotheque.

From:
https://chanterie37.fr/fablab37110/ - Castel'Lab le Fablab MJC de Chateau-Renault

Permanent link:
https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:librairies:creation

Last update: 2023/01/27 16:08

Castel'Lab le Fablab MJC de Chateau-Renault - https://chanterie37.fr/fablab37110/

https://chanterie37.fr/fablab37110/
https://chanterie37.fr/fablab37110/doku.php?id=start:arduino:librairies:creation

	Ecrire une bibliothèque pour Arduino

