2026/02/03 23:44 1/17 Langage C

Langage C

arduino-premiers-pas-en-informatique-embarquee
Arduino - Référence EN

Le grand Livre Arduino
Apprenez-a-concevoir-avant-de-programmer

Histoire et évolution des langages de programmation
Apprenez a programmer en C 2e Edition

Le Langage C

La POO et le langage arduino

Pourquoi apprendre a coder

Le codage, qu’est-ce que c’est ? Il s’agit simplement du langage de programmation informatique.
Maitriser cette nouvelle syntaxe permet de créer des actions et de commander aux machines. Un
graphiste peut par exemple concevoir un site Internet, s'il sait coder il est également capable de lui
donner vie sur la toile.

Maxime de Nicolas Boileau Philosophe du 17 eime siecle :

e “Avant donc que d'écrire, apprenez a penser.”

e “Ce que I'on concoit bien s'énonce clairement.”

e “Et les mots pour le dire arrivent aisément”.

e “Hatez-vous lentement, et sans perdre courage,”
» “Vingt fois sur le métier remettez votre ouvrage.”
e “Polissez-le sans cesse, et le repolissez.”

e “Ajouter quelquefois et souvent effacez.”

Savoir programmer permet ainsi de :

1. Grossir son CV : savoir combiner cette double casquette constitue une véritable plus-value sur le
marché de I'emploi. Le code enrichit vos compétences, vous rend plus précieux, plus utile, voire
indispensable. Bref, vous sortez du lot.

2. Comprendre son environnement : jeux vidéo, applications, pages web... étre initié au code c’est
savoir décrypter les rouages de ces objets qui nous gouvernent.

3. Partager : contrairement aux idées recues, le coding est régi par un esprit altruiste, c’est le fameux
« open source ». Vous pouvez copier des codes existants mais aussi offrir vos créations. Bienvenue au
programme des bisounours.

4. Aller au bout de vos idées : informé du champ des possibles, vous connaitrez les contraintes pour
mettre en ceuvre vos concepts et ainsi vous assurer de leur aboutissement.

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

http://78.204.53.180:16557/share/2G5ROl62TkHcqDPw/arduino-premiers-pas-en-informatique-embarquee.pdf
http://78.204.53.180:16557/share/6Gfce4RoleLVlMOD/Arduino%20-%20Reference-1.pdf
http://78.204.53.180:16557/share/FGnuBIUWMK9D1t-N/Le%20grand%20livre%20d_Arduino.pdf
https://www.editions-eni.fr/livre/developpement-informatique-apprenez-a-concevoir-avant-de-programmer-9782409012396
https://www.scriptol.fr/programmation/histoire-langages.php
http://78.204.53.180:16557/share/Z20_0dp6-9Eoqfa_/apprenez_a_programmer_en_c_2e_edition.pdf
https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:langc
https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:langc_poo

Last update:

2023/01/27 16:08 start:arduino:langage_c https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:langage_c&rev=1664435995

5. Simplifier les process : grace a cette nouvelle compétence, un client peut vous confier un projet
sans avoir recours a d'autres prestataires. Vous devenez ainsi I'interlocuteur dédié, c’est un gain de
temps et de réactivité, et donc d’argent.

6. Inventer des solutions opérationnelles : savoir coder, permet de concevoir des créations réalistes,
vouées a exister.

7. Mieux communiquer : connaitre le code c’est aussi maitriser les bons éléments de langage pour
expliquer vos idées a un intégrateur ou un développeur. Et d'optimiser ainsi la gestion de votre projet.

8. Booster sa créativité : I'univers du code n’est pas uniguement technique, il offre de nombreuses
opportunités créatives. Il s'agit de concevoir des programmes, mais aussi d'imaginer comment leur
donner vie.

9. Se la raconter : le codage a le vent en poupe, le succes de I'Ecole 42 en témoigne (Lire aussi
L'Ecole 42, élue meilleure Code Factory). Vous commandez aux machines, vous étes dans la matrice,
c’est jubilatoire.

10. S'amuser : I'apprentissage du code consiste a comprendre une nouvelle langue, son alphabet, sa
grammaire, ses modes d’expression... afin de créer des actions. Méme les plus jeunes s’y mettent et
peuvent créer leurs propres jeux grace notamment aux Magic Makers ou aux coding-godters.

Apprendre la programmation

Les Données

Les données manipulées en langage C sont typées, c'est-a-dire que pour chaque donnée que l'on
utilise (dans les variables par exemple) il faut préciser le type de donnée, ce qui permet de connaitre
I'occupation mémoire (le nombre d'octets) de la donnée ainsi que sa représentation :

e des nombres : entiers (int) ou réels, c'est-a-dire a virgules (float)
« des pointeurs (pointer) : permettent de stocker I'adresse d'une autre donnée, ils « pointent »
vers une autre donnée

En C il existe plusieurs types entiers, dépendant du nombre d'octets sur lesquels ils sont codés ainsi
que de leur format, c'est-a-dire s'ils sont signés (possédant le signe - ou +) ou non. Par défaut les
données sont signées.

Voici un tableau donnant les types de données en langage C :

Type de donnée Signification Taille (en octets) Plage de valeurs acceptée
char Caractere 1 -128 a 127
unsigned char Caractere non signé |1 0a 255
short int Entier court 2 -32768 a 32 767
unsigned short int Elntle,r court non 2 0a 65535
signé
int Entier 2 (sur processeur 16 b@ts) -32 768 a 32 76?
4 (sur processeur 32 bits) |-2 147 483 648 a 2 147 483 647
unsigned int Entier non signé 2 (sur processeur 16 blts.) 4 0a655350a4 294967 295
(sur processeur 32 bits)

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/03 23:44

https://fr.wikihow.com/commencer-%C3%A0-apprendre-la-programmation-informatique

2026/02/03 23:44 3/17 Langage C

Type de donnée Signification Taille (en octets) Plage de valeurs acceptée
long int Entier long 4 -2 147 483 648 a 2 147 483 647
unsigned long int |Entier long non signé|4 0a4294967 295

float Flottant (réel) 4 3.4*¥10-38 a 3.4*1038

double Flottant double 8 1.7*10-308 a 1.7*10308

long double Flottant double long |10 3.4*¥10-4932 a 3.4*104932

Les Variables

langage-c-les-variables
Types et tailles des données exemple : int8 t

Il est dans certains cas nécessaire d'utiliser des types de données qui donnent les mémes intervalles
de valeurs sur tous les ordinateurs. La norme ISO C99 impose de définir des types portables afin de
régler ces problémes sur toutes les architectures existantes. Ces types sont définis dans le fichier
d'en-téte stdint.h. Il s'agit des types int8_t, int16_t, int32_t et int64_t, et de leurs versions non
signées uint8_t, uint16_t, uint32_t et uint64_t. La taille de ces types en bits est indiquée dans
leur nom et leur utilisation ne devrait pas poser de probleme.

Tableaux de chaines de caracteres

Une chaine de caractéres est un tableau a 1 dimension de caracteres.

On peut également définir des tableaux a plusieurs dimensions qui peuvent contenir des mots:(le
tableau commence a 0)

char JOUR[7][9] = {“lundi” , "mardi” , "mercredi” , "jeudi” ,"vendredi”,”samedi”,”dimanche”}; [7] = il
y a 7 jours, [9] = 9 caractéres au maximum par mots

JOUR[O] = “lundi” etc ..

et on peut accéder a ces mots en utilisant la syntaxe suivante: int 1=2; Serial.printin(“Aujourd’hui
nous sommes”,JOUR[I]);

qui affichera “Aujourd’hui nous sommes mercredi”

la fonction String

I'objet String. Qu'est-ce qu'un objet?

Un objet est une construction qui contient a la fois des données et des fonctions. Un objet String peut
étre créé comme une variable et assigné une valeur ou une chaine. L'objet String contient des
fonctions (appelées «méthodes» en programmation orientée objet (POO)) qui operent sur les données
de chaine contenues dans I'objet String.

L'esquisse et I'explication suivantes expliquent clairement ce qu'est un objet et comment I'objet
String est utilisé. Exemple :

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

https://www.commentcamarche.com/contents/122-langage-c-les-variables
https://docs.oracle.com/cd/E19253-01/819-6958/chp-typeopexpr-2/index.html

Last update:

2023/01/27 16:08 start:arduino:langage_c https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:langage_c&rev=1664435995

exemplel.ino
void setup

String my str "This is my string."
Serial.begin

// (1) print the string
Serial.println(my str

// (2) change the string to upper-case
my str.toUpperCase
Serial.println(my str

// (3) overwrite the string

my str "My new string."
Serial.println(my str

// (4) replace a word in the string

my str.replace("string", "Arduino sketch"
Serial.println(my str

// (5) get the length of the string

Serial.print("String length is: "
Serial.println(my str.length

void loop

Résultat

This is my string.

THIS IS MY STRING.

My new string.

My new Arduino sketch.

String length is: 22

Un objet chaine est créé et une valeur (ou chaine) est attribuée en haut de I'esquisse.

String my str = "This is my string." ;

Cela crée un objet String avec le nom my_str et lui donne la valeur “Ceci est ma chaine.”.

Cela peut étre comparé a la création d'une variable et a lui attribuer une valeur telle qu'un entier -

int my var = 102;

L'esquisse fonctionne de la maniere suivante. Impression de la chaine

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/03 23:44

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:arduino:langage_c&codeblock=0

2026/02/03 23:44 5/17 Langage C

La chaine peut étre imprimée dans la fenétre Serial Monitor comme une chaine de tableau de
caracteres. Convertir la chaine en majuscules

L'objet chaine my str qui a été créé a un certain nombre de fonctions ou de méthodes qui peuvent
étre utilisées. Ces méthodes sont appelées en utilisant le nom des objets suivi de I'opérateur point (.)
Puis du nom de la fonction a utiliser.

my str.toUpperCase();

La fonction toUpperCase () opére sur la chaine contenue dans I' objet my_str qui est de type String et
convertit les données de chaine (ou texte) que I'objet contient en caracteres majuscules. Une liste des
fonctions que la classe String contient peut étre trouvée dans la référence Arduino String.
Techniquement, String est appelé une classe et est utilisé pour créer des objets String. Ecraser une
chaine

L'opérateur d'affectation est utilisé pour affecter une nouvelle chaine a I' objet my_str qui remplace
I'ancienne chaine

my str = "My new string." ;

L'opérateur d'affectation ne peut pas étre utilisé sur les chaines de tableau de caracteres, mais
fonctionne uniguement sur les objets String. Remplacement d'un mot dans la chaine

La fonction replace () est utilisée pour remplacer la premiere chaine qui lui est passée par la
deuxieme chaine qui lui est passée. replace () est une autre fonction intégrée a la classe String et
donc disponible pour une utilisation sur I'objet String my_str. Obtenir la longueur de la chaine

Obtenir la longueur de la chaine se fait facilement en utilisant length (). Dans I'exemple d'esquisse, le
résultat renvoyé par length () est passé directement a Serial.printin () sans utiliser de variable
intermédiaire. Quand utiliser un objet chaine

Un objet String est beaucoup plus facile a utiliser qu'un tableau de caracteres chaine. L'objet a des
fonctions intégrées qui peuvent effectuer un certain nombre d'opérations sur des chaines.

Le principal inconvénient de I'utilisation de I'objet String est qu'il utilise beaucoup de mémoire et peut
rapidement utiliser la mémoire RAM Arduinos, ce qui peut entrainer le blocage, le blocage ou un
comportement inattendu d'Arduino. Si un croquis sur un Arduino est petit et limite I'utilisation
d'objets, il ne devrait y avoir aucun probleme.

Les chaines de tableaux de caracteres sont plus difficiles a utiliser et vous devrez peut-étre écrire vos
propres fonctions pour opérer sur ces types de chaines. L'avantage est que vous avez le controle sur
la taille des tableaux de chaines que vous créez, vous pouvez donc garder les tableaux petits pour
économiser de la mémoire.

Vous devez vous assurer que vous n'écrivez pas au-dela de la fin des limites du tableau avec des
tableaux de chaines. L'objet String n'a pas ce probleme et s'occupera des limites de chaine pour vous,
a condition qu'il y ait suffisamment de mémoire pour qu'il puisse fonctionner. L'objet String peut
essayer d'écrire dans la mémoire qui n'existe pas lorsqu'il manque de mémoire, mais n'écrira jamais
sur la fin de la chaine sur laquelle il fonctionne. Ou les chaines sont utilisées

Dans ce chapitre, nous avons étudié les chaines, leur comportement en mémoire et leurs opérations.

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

Last update:

2023/01/27 16:08 start:arduino:langage_c https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:langage_c&rev=1664435995

Les utilisations pratiques des chaines seront couvertes dans la partie suivante de ce cours lorsque
nous étudierons comment obtenir une entrée utilisateur a partir de la fenétre Serial Monitor et
enregistrer I'entrée dans une chaine.

Les structures en langage C

Différence entre une structure et un tableau

Un tableau permet de regrouper des éléments de méme type, c'est-a-dire codés sur le méme nombre
de bits et de la méme fagon. Toutefois, il est généralement utile de pouvoir rassembler des éléments
de type différent tels que des entiers et des chaines de caracteres.

Les structures permettent de remédier a cette lacune des tableaux, en regroupant des objets (des
variables) au sein d'une entité repérée par un seul nom de variable.

Les objets contenus dans la structure sont appelés champs de la structure. Déclaration d'une
structure

Lors de la déclaration de la structure, on indique les champs de la structure, c'est-a-dire le type et le
nom des variables qui la composent :

struct Nom Structure
type champl Nom Champl

type champ2 Nom_ Champ2
type champ3 Nom Champ3
type champ4 Nom Champ4

type champ5 Nom_ Champ5

La derniere accolade doit étre suivie d'un point-virgule !
Le nom des champs répond aux criteres des noms de variable
Deux champs ne peuvent avoir le méme nom

Les données peuvent étre de n'importe quel type hormis le type de la structure dans laquelle elles se
trouvent

Ainsi, la structure suivante est correcte :

struct MaStructure
int Age

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/03 23:44

2026/02/03 23:44 7/17 Langage C

char Sexe
char Nom
float MoyenneScolaire

struct AutreStructure StructBis
/* en considérant que la structure AutreStructure est définie */

Par contre la structure suivante est incorrecte :

struct MaStructure
int Age

char Age

struct MaStructure StructBis

[l'y a deux raisons a cela :

¢ Le nom de variable Age n'est pas unique
* Le type de donnée struct MaStructure n'est pas autorisé

La déclaration d'une structure ne fait que donner I'allure de la structure, c'est-a-dire en quelque sorte
une définition d'un type de variable complexe. La déclaration ne réserve donc pas d'espace mémoire
pour une variable structurée (variable de type structure), il faut donc définir une (ou plusieurs)
variable(s) structurée(s) apres avoir déclaré la structure... Définition d'une variable structurée

La définition d'une variable structurée est une opération qui consiste a créer une variable ayant
comme type celui d'une structure que I'on a précédemment déclarée, c'est-a-dire la nommer et lui
réserver un emplacement en mémoire.

La définition d'une variable structurée se fait comme suit :
struct Nom Structure Nom Variable Structuree;

Nom_Structure représente le nom d'une structure que I'on aura préalablement déclarée.
Nom_Variable_Structuree est le nom que I'on donne a la variable structurée.

Il va de soi que, comme dans le cas des variables on peut définir plusieurs variables structurées en
les séparant avec des virgules :

struct Nom Structure Noml, Nom2, Nom3, ...;
Soit la structure Personne :

struct Personne

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

Last update:

2023/01/27 16:08 start:arduino:langage_c https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:langage_c&rev=1664435995

int Age

char Sexe

On peut définir plusieurs variables structurées :
struct Personne Pierre, Paul, Jacques;

Acces aux champs d'une variable structurée

Chaque variable de type structure posséde des champs repérés avec des noms unigues. Toutefois le
nom des champs ne suffit pas pour y accéder étant donné

gu'ils n'ont de contexte qu'au sein de la variable structurée...

Pour accéder aux champs d'une structure on utilise I'opérateur de champ (un simple point) placé
entre le nom de la variable structurée que I'on a défini et le nom du champ :

Nom Variable.Nom Champ;

Ainsi, pour affecter des valeurs a la variable Pierre (variable de type struct Personne
définie précédemment), on pourra écrire :

Pierre.Age = 18;

Pierre.Sexe = 'M";

Tableaux de structures

Etant donné qu'une structure est composée d'éléments de taille fixe, il est possible de créer un
tableau ne contenant que des éléments du type d'une structure donnée. Il suffit de créer un tableau
dont le type est celui de la structure et de le repérer par un nom de variable :

struct Nom Structure Nom Tableau[Nb Elements];

Chaque élément du tableau représente alors une structure du type que I'on a défini...

Le tableau suivant (nommé Repertoire) pourra par exemple contenir 8 variables structurées de type
struct Personne :

struct Personne Repertoire[8];

De la méme facon, il est possible de manipuler des structures dans les fonctions.

L'instruction if

L'instruction if est la structure de test la plus basique, on la retrouve dans tous les langages (avec une

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/03 23:44

2026/02/03 23:44 9/17 Langage C

syntaxe différente...). Elle permet d'exécuter une série d'instructions si jamais une condition est
réalisée.

La syntaxe de cette expression est la suivante :

condition réalisée
liste d'instructions;

Remarques :

* |la condition doit étre entre des parentheses
* il est possible de définir plusieurs conditions a remplir avec les opérateurs ET et OU (&& et ||)

Par exemple l'instruction suivante teste si les deux conditions sont vraies :
conditionl condition?2
L'instruction suivante exécutera les instructions si I'une ou 'autre des deux conditions est vraie :

conditionl condition?2

e s'il n'y a qu'une instruction, les accolades ne sont pas nécessaires...
« |les instructions situées dans le bloc qui suit else sont les instructions qui seront exécutées si la
ou les conditions ne sont pas remplies

L'instruction if ... else

L'instruction if dans sa forme basique ne permet de tester qu'une condition, or la plupart du temps on
aimerait pouvoir choisir les instructions a exécuter en cas de non réalisation de la condition...

L'expression if ... else permet d'exécuter une autre série d'instructions en cas de non-réalisation de la
condition.

La syntaxe de cette expression est la suivante :

condition réalisée
liste d'instructions

}

else {
autre série d'instructions

Une facon plus courte de faire un test
Il est possible de faire un test avec une structure beaucoup moins lourde grace a

la structure suivante :

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

Last update:

2023/01/27 16:08 start:arduino:langage_c https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:langage_c&rev=1664435995

(condition) ? instruction si vrai : instruction si faux</i>

Remarques :

la condition doit étre entre des parentheses

Lorsque la condition est vraie, I'instruction de gauche est exécutée

Lorsque la condition est fausse, l'instruction de droite est exécutée

En plus d'étre exécutée, la structure ?: renvoie la valeur résultant de I'instruction exécutée.
Ainsi, cette forme ?: est souvent utilisée comme suit :

position = ((enAvant == 1) ? compteur+1 : compteur-1);

L'instruction switch

L'instruction switch permet de faire plusieurs tests de valeurs sur le contenu d'une méme variable. Ce
branchement conditionnel simplifie beaucoup le test de plusieurs valeurs d'une variable, car cette
opération aurait été compliquée (mais possible) avec des if imbriqués. Sa syntaxe est la suivante :

Variable

Valeurl
Liste d'instructions;
break;

case Valeur2
Liste d'instructions
break

Valeurs...
Liste d'instructions;
break;

default:
Liste d'instructions

Les parentheses qui suivent le mot clé switch indiquent une expression dont la valeur est testée
successivement par chacun des case. Lorsque I'expression testée est égale a une des valeurs suivant
un case, la liste d'instructions qui suit celui-ci est exécutée. Le mot clé break indique la sortie de la
structure conditionnelle. Le mot clé default précede la liste d'instructions qui sera exécutée si
I'expression n'est jamais égale a une des valeurs.

» N'oubliez pas d'insérer des instructions break entre chaque test, ce genre d'oubli est difficile a
détecter car aucune erreur n'est signalée... En effet, lorsque I'on omet le break, I'exécution
continue dans les blocs suivants ! *

Cet état de fait peut d'ailleurs étre utilisé judicieusement afin de faire exécuter les mémes
instructions pour différentes valeurs consécutives, on peut ainsi mettre plusieurs cases avant le bloc :

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/03 23:44

2026/02/03 23:44 11/17 Langage C

variable
instructions exécutées pour variable ou pour variable
break
instructions exécutées pour variable uniquement
break

instructions exécutées pour toute autre valeur de variable

Les boucles

Les boucles, dans un programme, permettent de répéter certaines instructions plusieurs fois sans
avoir a recoder plusieurs fois ces instructions. En C il existe trois types de boucles, nous parlerons de
chacune d'elle. Les voici :

o for

¢ while
¢ do / while

La boucle for

La boucle for teste une condition avant d'exécuter les instructions qui lui sont associées. Voila sa
synthaxe :

expressionl ; expression2 ; expression3

instructions a réaliser

expressionl sera une initialisation d'une variable dit de contr6le qui servira lors du test de condition
de réalisation des instructions de la boucle.

expression2 ce sera justement la condition pour que la boucle s'exécute.
expression3 permettra de modifier la valeur de la variable de contréle a chaque passage de la boucle.
N'oubliez pas de séparer ces 3 expressions parun “ ;"

Voyons maintenant son fonctionnement a travers un programme qui se chargera d'afficher 3 fois le
terme “Hello world!”

int main

int i /* voila notre variable de controle */
i i i

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

Last update:) . . : A= . . —
2023/01/27 16:08 start:arduino:langage_c https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:langage_c&rev=1664435995

printf("Hello World !\n"

En testant ce code vous devriez avoir quelque chose comme :
Code console:

Hello World!

Hello World!

Hello World!

Détaillons maintenant le code que nous venons de créer :

i=0;1<3 i

i © ; //0n commence par initialiser notre variable de contrble a 0 (
ne pas oublier de la déclarer avant dans le programme ?)

i 3 ; //C'est la condition pour que la boucle s'exécute, tant que 1
sera inférieur 3 les instructions a l'intérieur de la boucle continuerons de
s'exécuter

i //(équivalent a i + 1 [dorénavant préférer le ++ plutét que le + 1
sur une variable ou le -- plutdt que le - 1]) Cette expression signifie
qu'on ajoutera 1 a la variable i1 a chaque passage de boucle.

Voila comment on pourrait traduire cette boucle en francais :
Commence avec i = 0 ; Faire tant que i < 3 ; Rajoute 1 a chaque passage de la boucle ;

Afficher le message “Hello World!” Reviens au début Rajoute 1 i = 1 donc < 3 On peux recommencer
Afficher le message “Hello World!” Reviens au début Rajoute 1 i = 2 donc < 3 On peux recommencer
Afficher le message “Hello World! Rajoute 1 i = 3 donc i < 3 est validé Quitte la boucle Fin du
programme.

Voila sommairement ce que fait notre programme. ?

I n'y a pas de ";“ a la fin du for c'est une erreur assez répandu chez ceux qui débute donc faites y
attention ?

La boucle while

Continuons maintenant avec la boucle while

La boucle while, tout comme la boucle for ne permet I'exécution d'instructions que si une condition
vérifiée, avant I'exécution des instructions, est vrai (TRUE). Voici sa synthaxe :

condition

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/03 23:44

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/02/03 23:44 13/17 Langage C

instructions(s

voyons son fonctionnement a travers le méme programme que tout a I'heure a savoir : afficher trois
fois le message “Hello World !”

int main
int i
i
printf("Hello World !\n"
i
Détaillions :

On commence comme d'habitude par initialiser notre variable de contrdle (i). Ensuite on rentre dans
la boucle car la condition est vérifiée (i vaut 0 donc est bien < a 3) Puis on affiche le fameux hello
world!. On ajoute 1 a la variable i. Le programme retourne au début, recommence a exécuté les
instructions car aa ce moment i vaut 1 ... et ainsi de suite jusqu'a ce que i soit égal a 3 lors du test de
condition, ce qui fera quitter la boucle au programme.

[l n'y a pas non plus de ”;“ a la fin du while

Vous commencez a comprendre le principe des boucles ? C'est bien ?

La boucle do / while

Il ne nous en reste plus qu'une a voir : la boucle do / while

La boucle do / while differe des autres dans le sens ou les instructions qui lui sont rattachées
s'exécutent au moins une fois. Cela étant du a sa synthaxe :

instruction(s) a réaliser
condition

Comme vous pouvez le voir la condition pour que la boucle se réalise se situe a la fin de la boucle. Or
comme vous le savez déja peu étre, votre ordinateur lit le programme de bas en haut ce qui fait que
les instructions d'une boucle do / while s'exécute au moins une fois

Ici ne pas oublier le " ; “ a la fin du while

petite mise en garde sur les boucles infinie

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

Last update:

2023/01/27 16:08 start:arduino:langage_c https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:langage_c&rev=1664435995

Utiliser des boucles dans un programme c'est bien, mais si on ne fait pas attention a ce que I'on écrit
on peut vite arriver a ce que I'on appel une boucle infinie, c'est a dire une boucle dont la condition est
toujours vrai, donc qui ne s'arrétera jamais et bloguera votre programme. Heureusement les
systemes d'exploitation actuel savent faire face a ce genre de probleme et vous n'aurez pas de mal a
arréter votre programme.

Voici des exemples de boucle infinie (a éviter de reproduire donc ?)

printf("Boucle infinie !"

/* 1 est toujours vrai */

printf("Boucle infinie !"

/* 1 vaut 0 au départ donc sera TOUJOURS supérieur a -1 dans cette boucle !
*/

printf("Boucle infinie !"

/* 4 est toujours supérieur a 5 */

Soyez attentif et pensez votre code avant de le compiler ?

Conclusion

Voila vous savez maintenant comment faire une boucle dans un programme C. Pourquoi ne pas vous
entrainer en créant un petit programme qui fera autant de tour que I'utilisateur voudra ? et qui
affichera le nombre de tours effectués ?

Essayer d'avoir un rendu comme celui ci :
Code console: Combien de tour SVP : 3
Nombre de tours dans la boucle : 1
Nombre de tours dans la boucle : 2
Nombre de tours dans la boucle : 3

Sortie de la boucle...

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/03 23:44

http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html
http://www.opengroup.org/onlinepubs/009695399/functions/printf.html

2026/02/03 23:44 15/17 Langage C

Ou vous pouvez tout aussi bien tenter de créer une calculette multi-fonctions ou encore des petits
programmes de révisions des dates historiques par exemple.

Les fonctions ou sous programmes

les fonctions FR
Les fonctions FR

Dans un programme, les lignes sont souvent tres nombreuses. Il devient alors impératif de séparer le
programme en petits bouts afin d’améliorer la lisibilité de celui-ci, en plus d’améliorer le
fonctionnement et de faciliter le débogage. Nous allons voir ensemble ce qu’est une fonction, puis
nous apprendrons a les créer et les appeler.

Qu’est-ce qu’une fonction?

Une fonction est un “conteneur” mais différent des variables. En effet, une variable ne peut contenir
gu’un nombre, tandis qu’une fonction peut contenir un programme entier! Par exemple ce code est
une fonction:

Standardiser les fragments de code en fonctions présente plusieurs avantages :

* Les fonctions aident le programmeur a rester organisé. Cela aide souvent a conceptualiser le
programme.

* Les fonctions codifient une action en un seul endroit afin que la fonction n'ait a étre pensée et
déboguée qu'une seule fois.

 Cela réduit également les risques d'erreurs de modification, si le code doit étre modifié.

Les fonctions rendent I'ensemble de I'esquisse plus petite et plus compacte car des sections de code
sont réutilisées plusieurs fois. lls facilitent la réutilisation du code dans d'autres programmes en le
rendant plus modulaire et, comme effet secondaire agréable, I'utilisation de fonctions rend souvent le
code plus lisible.

Il'y a deux fonctions requises dans une esquisse Arduino, setup() et loop().
D'autres fonctions doivent étre créées en dehors des parentheses de ces deux fonctions. A titre

d'exemple, nous allons créer une fonction simple pour multiplier deux nombres.

Exemples :

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

https://www.locoduino.org/spip.php?article101
https://zestedesavoir.com/tutoriels/686/arduino-premiers-pas-en-informatique-embarquee/742_decouverte-de-larduino/3419_le-langage-arduino-22/#2-10792_les-fonctions

Last update:) . . : A= . . —
2023/01/27 16:08 start:arduino:langage_c https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:langage_c&rev=1664435995

Anatomy of a C function

Datatype of data returned,

any C datat >
' o Parameters passed to

"vold” If nothing is returned. function, any C datatype.

Function name 1 \
/ '

int myMultiplyFunction(int x, int y){
|

int result:; \ Return statement,
datatype matches

result = x * yi ~ declaration.
return result;

} -

Curly braces required.

Pour “appeler” notre simple fonction de multiplication, nous lui passons les parametres du type de
données qu'elle attend;

Notre fonction doit étre déclarée en dehors de toute autre fonction, donc “myMultiplyFunction()” peut
aller au-dessus ou au-dessous de la fonction “loop()”.

L'ensemble de I'esquisse ressemblerait alors a ceci :

0001.ino

void setup(){
Serial.begin(9600);

}

void loop() {
int i = 2;
int j = 3;
int k;

k = myMultiplyFunction(i, j); // k now contains 6
Serial.println(k);
delay(500);

}

int myMultiplyFunction(int x, int y){
int result;
result = x * vy;
return result;

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/03 23:44

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:arduino:langage_c&codeblock=18

2026/02/03 23:44 17/17 Langage C

L'IDE Arduino permet d'appeler une fonction avant sa définition.

Dans les fichiers .cpp, vous devez définir la fonction ou du moins déclarer le prototype de fonction
avant de pouvoir l'utiliser. Dans un fichier .ino, I'IDE Arduino crée un tel prototype dans les coulisses.

From:
https://www.fablab37110.chanterie37.fr/ - Castel'Lab le Fablab MJC de Chateau-Renault

Permanent link:
https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:langage_c&rev=1664435995 4

Last update: 2023/01/27 16:08

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

https://www.fablab37110.chanterie37.fr/
https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:langage_c&rev=1664435995

	[Langage C]
	Langage C
	Pourquoi apprendre à coder
	Les Données
	Les Variables
	Tableaux de chaines de caractères
	la fonction String
	Les structures en langage C
	Différence entre une structure et un tableau

	L'instruction if
	L'instruction if ... else
	L'instruction switch
	Les boucles
	La boucle for
	La boucle while
	La boucle do / while
	Conclusion

	Les fonctions ou sous programmes
	Qu’est-ce qu’une fonction ?
	Exemples :

