2026/02/03 23:44 1/6 ESP 32 NOW

ESP 32 NOW

ESP-NOW

ESP-NOW est un protocole d'échange de données entre ESP-32 (ou ESP8266) que I'on peut
programmer avec I'IDE Arduino. C'est un protocole développé par Espressif, le fabricant des puces
ESP, et qui permet d'échanger de courts paquets de données directement et simplement. Il est
possible de réaliser des échanges entre plusieurs ESP dans les deux sens (émission et réception) sans
intermédiaire central (sans routeur).

Le protocole ESP-NOW

Tel qu'il est décrit sur le site d'Espressif, le protocole ESP-NOW permet d'échanger des paquets sans
routeur Wifi, s'approchant en cela du systeme utilisé par les objets connectés en 2.4Ghz (souris ou
claviers sans fil, en particulier). L'appairage entre modules est nécessaire (nous verrons plus loin qu'il
faut utiliser I'adresse MAC des ESP), mais une fois que cet appairage est réalisé la connexion
s'effectue tres rapidement, sans “handshake”. Dis plus simplement, lorsque I'appairage est effectué,
on peut éteindre ou redémarrer un module, la reconnexion sera automatique et immédiate.

Il est possible de réaliser un schéma ou un module central envoie des informations a de nombreux
autres modules (one to many), ou au contraire de nombreux modules envoient a un module central
(many to one), mais aussi un réseau maillé ou chaque module peut envoyer a tous les autres. Chaque
module, au sein d'un réseau, peut-étre a le fois émetteur ET récepteur.

Il est possible de chiffrer les communications, et de mélanger des communications chiffrées ou non
dans un méme réseau. Le nombre de modules doit rester en dessous de 10 lorsque I'on utilise le
chiffrement et 20 lorsque I'on échange en clair.

Il n'est possible d'échanger que 250 octets au maximum a chaque envoi. Une fonction de rappel peut
étre déclenchée pour confirmer la bonne réception ou I'envoi des données. Connaitre I'adresse MAC

La premiere étape va consister a noter les adresses MAC de chaque appareil que nous voulons faire
communiquer. Pour mémoire, I'adresse MAC (Media Access Control) est un identifiant unique matériel
qui identifie chaque appareil sur un réseau. Chaque ESP32 possede, en sortie d'usine, une adresse
MAC différente, composée de 6 octets. Il est possible de changer de maniere logicielle I'adresse MAC
de I'ESP, mais cela ne survit pas a un reboot, il faut donc l'inclure dans le code exécuté a chaque fois
(tuto ici).

Téléverser le code suivant dans chaque ESP, et noter soigneusement le résultat qui va s'afficher dans
la console.

exempl001.ino

#include "WiFi.h"

void setup
Serial.begin
WiFi.mode (WIFI MODE STA
Serial.println(WiFi.macAddress

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:arduino:esp32:now&codeblock=0

Last update:
2023/01/27 start:arduino:esp32:now https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:esp32:now&rev=1641407009
16:08

void loop

Cette étape manuelle permettra d'appairer facilement chaque module. Néanmoins, il est a noter
qgu'une méthode tres astucieuse permet de se passer de cette manip préalable, et de connecter de
maniére automatique chague module. Néanmoins, elle est un peu plus complexe. L'idée est la
suivante: les “récepteurs” émettent un réseau wifi dont le SSID comporte une chaine prédéfinie (par
exemple, “RECEPTION". L'émetteur scanne les réseaux Wifi environnants, et lorsqu'il détecte un SSID
commencant par “RECEPTION", il en récupere I'adresse MAC, avant de créer |'appairage. C'est de
cette maniere que fonctionnent les deux exemples Master et Slave que I'on trouvera dans les
exemples ESP32>ESP-NOW de I'IDE Arduino.

Principe de communication

Pour commencer, nous allons simplement envoyer des informations d'un ESP vers un autre. Par
commodité, nous les appellerons donc “Emetteur” et “Récepteur”.

Coté émetteur:

1. -Initialiser ESP-NOW.

2. -Enregistrer une fonction de rappel, qui sera exécutée quant un message est envoyé. Cela nous
permettra de vérifier la bonne transmission du message.

3. -On ajoute I'adresse MAC du récepteur, pour I'appairage.

4. -On envoie le message.

Coté récepteur:

1. -Initialiser ESP-NOW.

. -Enregistrer une fonction de rappel, qui sera exécutée quant un message est recu.

3. -Dans cette fonction de rappel, on sauve le contenu du message dans une variable pour en faire
guelque chose.

N

A Chaque étape listée ci-dessus va correspondre une fonction spécifique a I'utilisation du protocole:

e esp_now_init() Initialiser ESP-NOW. Il faut initialiser le wifi avant d'initialiser ESP-NOW.

e esp_now_add_peer() On appelle cette fonction pour appairer un ESP, on passe son adresse MAC
en argument.

e esp_now_send() Envoie des données avec ESP-NOW.

e esp_now_register send_cb() Enregistre une fonction de rappel qui sera déclenchée lorsque I'on
envoie des données.

* esp_now_register_rcv_cb() Enregistre une fonction de rappel qui sera déclenchée lorsque I'on
recoit des données.

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/03 23:44

2026/02/03 23:44 3/6 ESP 32 NOW

Code de I'émetteur

Ci-dessous, le code commenté:

// Référence technique:
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/ne
twork/esp_now. html

// Inclure les librairies
#include <esp now.h>
#include <WiFi.h>

// Stockage de l'adresse MAC du récepteur pour usage ultérieur. Remplacer
les 'FF' par les valeur notées plus avant.
uint8 t MAC recepteur| | = {OxFF, OxFF, OxFF, OxFF, OxFF, OxFF};

// La variable qui sera envoyée au récepteur (nous générerons une valeur
aléatoire pour 1'exemple)

float maValeurEnvoyee;

// La fonction de rappel qui nous assurera de la bonne livraison du message
void quand donnees Envoyees(const uint8 t *mac_addr, esp now send status t
status) {

Serial.print("\r\nDernier paquet envoyé:\t");

Serial.println(status == ESP_NOW SEND SUCCESS 7 "Succés" : "Echec");
}

// Une variable qui servira a stocker les réglages concernant le récepteur
esp now peer _info t infosRecepteur;

void setup() {
// On initie la comm série a 115200 Bauds
Serial.begin(115200);

// On démarre le Wifi en mode Station
WiFi.mode (WIFI STA);

// Puis on initialise ESP-NOW

17 (esp now init() != ESP OK) {
Serial.println("Erreur d'initialisation ESP-NOW");
return;

}

// Si ESP-NOW a correctement démarré, il est temps d'enregistrer la
fonction de rappel:
esp _now register send cb(quand donnees Envoyees) ;

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

Last update:
2023/01/27 start:arduino:esp32:now https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:esp32:now&rev=1641407009
16:08

// Tout est prét pour l'appairage avec notre récepteur:
memcpy (infosRecepteur.peer addr, MAC recepteur, 6

// 0On définit un canal (0 utilisera automatiquement le méme canal que
celui utilisé par le wifi)

infosRecepteur.channel = 0

// 0n ne chiffre pas les échanges
infosRecepteur.encrypt false

// Appairage

1T (esp_now add peer(&infosRecepteur ESP_OK
Serial.println("Echec de 1'appairage"
return
void loop

// 0On définit la valeur de la variable a envoyer a l'aide d'un générateur
aléatoire
maValeurEnvoyee random(1,20

// 0n envoie le message
esp err_t resultat = esp now send(MAC recepteur, (uint8 t

maValeurEnvoyee, sizeof(maValeurEnvoyee

1T (resultat ESP OK
Serial.println("Envoi OK"

else

Serial.println("Erreur envoi"

// 0On effectue cette opération toutes les secondes
delay (1000

Code du récepteur

Voici le code du récepteur, commenté en détail:

// Inclure les librairies
#include <esp now.h>
#include <WiFi.h>

// La variable qui sera envoyée au récepteur (nous générerons une valeur
aléatoire pour 1l'exemple)

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/03 23:44

http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html

2026/02/03 23:44 5/6 ESP 32 NOW

float maValeurRecue

// La fonction de rappel qui nous assurera de la bonne livraison du message
void quand donnees Recues(const uint8 t * mac, const uint8 t
data reception, int taille
memcpy (&maValeurRecue, data reception, sizeof(maValeurRecue
Serial.print("Bytes received: "
Serial.println(taille
Serial.print("valeur recue:
Serial.println(maValeurRecue
Serial.println

void setup
// On initie la comm série a 115200 Bauds
Serial.begin (115200

// On démarre le Wifi en mode Station
WiFi.mode (WIFI STA

// Puis on initialise ESP-NOW
esp now init ESP OK
Serial.println("Erreur d'initialisation ESP-NOW"

// Si ESP-NOW a correctement démarré, il est temps d'enregistrer la
fonction de rappel:
esp _now register recv _cb(quand donnees Recues

void loop

Tester et aller plus loin

Lorsque vous regarderez les console série des deux ESP, vous constaterez que les messages sont
bien expédiés, bien recus et leur contenu correctement interprété coté récepteur. Les différentes
sources trouvées sur le net parlent d'une portée en extérieur supérieur a 200 metres, avec les deux
antennes pointant I'une vers 'autre. A tester, les essais réalisés autour de notre projet de compteur
ont plutét été concluants jusqu'a 100 metres environ.

Nous vous renvoyons aux exemples disponibles dans la bibliotheque Arduino pour aller plus loin !

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/

http://www.opengroup.org/onlinepubs/009695399/functions/memcpy.html

Last update:
2023/01/27 start:arduino:esp32:now https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:esp32:now&rev=1641407009
16:08

From:
https://www.fablab37110.chanterie37.fr/ - Castel'Lab le Fablab MJC de Chateau-Renault

Permanent link:
https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:esp32:now&rev=1641407009

Last update: 2023/01/27 16:08

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/03 23:44

https://www.fablab37110.chanterie37.fr/
https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:esp32:now&rev=1641407009

	ESP 32 NOW
	Le protocole ESP-NOW
	Principe de communication
	Côté émetteur:
	Côté récepteur:
	Code de l'émetteur
	Code du récepteur
	Tester et aller plus loin

