2026/02/04 14:26 1/5 ESP 32 NOW

ESP 32 NOW

ESP-NOW

ESP-NOW est un protocole d'échange de données entre ESP-32 (ou ESP8266) que I'on peut
programmer avec I'IDE Arduino. C'est un protocole développé par Espressif, le fabricant des puces
ESP, et qui permet d'échanger de courts paquets de données directement et simplement. Il est
possible de réaliser des échanges entre plusieurs ESP dans les deux sens (émission et réception) sans
intermédiaire central (sans routeur).

Le protocole ESP-NOW

Tel qu'il est décrit sur le site d'Espressif, le protocole ESP-NOW permet d'échanger des paquets sans
routeur Wifi, s'approchant en cela du systeme utilisé par les objets connectés en 2.4Ghz (souris ou
claviers sans fil, en particulier). L'appairage entre modules est nécessaire (nous verrons plus loin qu'il
faut utiliser I'adresse MAC des ESP), mais une fois que cet appairage est réalisé la connexion
s'effectue tres rapidement, sans “handshake”. Dis plus simplement, lorsque I'appairage est effectué,
on peut éteindre ou redémarrer un module, la reconnexion sera automatique et immédiate.

Il est possible de réaliser un schéma ou un module central envoie des informations a de nombreux
autres modules (one to many), ou au contraire de nombreux modules envoient a un module central
(many to one), mais aussi un réseau maillé ou chaque module peut envoyer a tous les autres. Chaque
module, au sein d'un réseau, peut-étre a le fois émetteur ET récepteur.

Il est possible de chiffrer les communications, et de mélanger des communications chiffrées ou non
dans un méme réseau. Le nombre de modules doit rester en dessous de 10 lorsque I'on utilise le
chiffrement et 20 lorsque I'on échange en clair.

Il n'est possible d'échanger que 250 octets au maximum a chaque envoi. Une fonction de rappel peut
étre déclenchée pour confirmer la bonne réception ou I'envoi des données. Connaitre I'adresse MAC

La premiere étape va consister a noter les adresses MAC de chaque appareil que nous voulons faire
communiquer. Pour mémoire, I'adresse MAC (Media Access Control) est un identifiant unique matériel
qui identifie chaque appareil sur un réseau. Chaque ESP32 possede, en sortie d'usine, une adresse
MAC différente, composée de 6 octets. Il est possible de changer de maniere logicielle I'adresse MAC
de I'ESP, mais cela ne survit pas a un reboot, il faut donc l'inclure dans le code exécuté a chaque fois
(tuto ici).

Téléverser le code suivant dans chaque ESP, et noter soigneusement le résultat qui va s'afficher dans
la console.

exempl001.ino

#include "WiFi.h"

void setup
Serial.begin
WiFi.mode (WIFI MODE STA
Serial.println(WiFi.macAddress

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/


https://www.fablab37110.chanterie37.fr/doku.php?do=export_code&id=start:arduino:esp32:now&codeblock=0

Last update:
2023/01/27 start:arduino:esp32:now https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:esp32:now&rev=1641406679
16:08

void loop

Cette étape manuelle permettra d'appairer facilement chaque module. Néanmoins, il est a noter
qgu'une méthode tres astucieuse permet de se passer de cette manip préalable, et de connecter de
maniére automatique chague module. Néanmoins, elle est un peu plus complexe. L'idée est la
suivante: les “récepteurs” émettent un réseau wifi dont le SSID comporte une chaine prédéfinie (par
exemple, “RECEPTION". L'émetteur scanne les réseaux Wifi environnants, et lorsqu'il détecte un SSID
commencant par “RECEPTION", il en récupere I'adresse MAC, avant de créer |'appairage. C'est de
cette maniere que fonctionnent les deux exemples Master et Slave que I'on trouvera dans les
exemples ESP32>ESP-NOW de I'IDE Arduino.

Principe de communication

Pour commencer, nous allons simplement envoyer des informations d'un ESP vers un autre. Par
commodité, nous les appellerons donc “Emetteur” et “Récepteur”.

Coté émetteur:

1. -Initialiser ESP-NOW.

2. -Enregistrer une fonction de rappel, qui sera exécutée quant un message est envoyé. Cela nous
permettra de vérifier la bonne transmission du message.

3. -On ajoute I'adresse MAC du récepteur, pour I'appairage.

4. -On envoie le message.

Coté récepteur:

1. -Initialiser ESP-NOW.

. -Enregistrer une fonction de rappel, qui sera exécutée quant un message est recu.

3. -Dans cette fonction de rappel, on sauve le contenu du message dans une variable pour en faire
guelque chose.

N

A Chaque étape listée ci-dessus va correspondre une fonction spécifique a I'utilisation du protocole:

esp_now_init() Initialiser ESP-NOW. Il faut initialiser le wifi avant d'initialiser ESP-NOW.
esp_now_add_peer() On appelle cette fonction pour appairer un ESP, on passe son adresse MAC en
argument. esp_now_send() Envoie des données avec ESP-NOW. esp_now_register _send_chb()
Enregistre une fonction de rappel qui sera déclenchée lorsque I'on envoie des données.
esp_now_register_rcv_cb() Enregistre une fonction de rappel qui sera déclenchée lorsque I'on regoit
des données. Code de I'émetteur

Ci-dessous, le code commenté:

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 14:26



2026/02/04 14:26 3/5 ESP 32 NOW

Référence technique:
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html
<code ¢> Inclure les librairies #include <esp_now.h> #include <WiFi.h> </code>

Stockage de I'adresse MAC du récepteur pour usage ultérieur. Remplacer les 'FF' par les valeur notées
plus avant. uint8_t MAC recepteur[] = {0xFF, OxFF, OxFF, OxFF, OxFF, OxFF}; La variable qui sera
envoyée au récepteur (nous générerons une valeur aléatoire pour I'exemple)

float maValeurEnvoyee

La fonction de rappel qui nous assurera de la bonne livraison du message <code c¢> void
quand_donnees_Envoyees(const uint8 t *mac_addr, esp_now_send_status t status) {
Serial.print(“\\nDernier paquet envoyé:\t”); Serial.printin(status == ESP_NOW _SEND SUCCESS ?
“Succés” : “Echec”); } </code> Une variable qui servira & stocker les réglages concernant le
récepteur

esp now peer info t infosRecepteur
void setup() {

// On initie 1la comm série a 115200 Bauds
Serial.begin(115200);

On démarre le Wifi en mode Station WiFi.mode(WIFI_STA); Puis on initialise ESP-NOW

if (esp _now init() != ESP OK) {
Serial.println("Erreur d'initialisation ESP-NOW");
return;

}

// Si ESP-NOW a correctement démarré, il est temps d'enregistrer la fonction
de rappel:
esp _now register send cb(quand donnees Envoyees);

// Tout est prét pour l'appairage avec notre récepteur:
memcpy (infosRecepteur.peer _addr, MAC recepteur, 6);

// On définit un canal (0 utilisera automatiquement le méme canal que celui
utilisé par le wifi)
infosRecepteur.channel = 0;

// 0On ne chiffre pas les échanges
infosRecepteur.encrypt = false;

// Appairage

if (esp_now add peer(&infosRecepteur) != ESP OK){
Serial.println("Echec de 1'appairage");
return;

}

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/


https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/network/esp_now.html

Last update:
2023/01/27 start:arduino:esp32:now https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:esp32:now&rev=1641406679
16:08

}
void loop() {

// On définit la valeur de la variable a envoyer a 1'aide d'un générateur
aléatoire
maValeurEnvoyee = random(1,20);

// On envoie le message
esp _err_t resultat = esp now send(MAC recepteur, (uint8 t *)
&maValeurEnvoyee, sizeof(maValeurEnvoyee));

if (resultat == ESP OK) {
Serial.println("Envoi OK");

}
else {
Serial.println("Erreur envoi");

}

// On effectue cette opération toutes les secondes
delay(1000);

}

Code du récepteur
Voici le code du récepteur, commenté en détail:

Inclure les librairies #include <esp_now.h> #include <WiFi.h> La variable qui sera envoyée au
récepteur (nous générerons une valeur aléatoire pour I'exemple) float maValeurRecue;

La fonction de rappel qui nous assurera de la bonne livraison du message void

quand_donnees Recues(const uint8_t * mac, const uint8_t *data reception, int taille) {
memcpy(&maValeurRecue, data_reception, sizeof(maValeurRecue)); Serial.print(“Bytes received: ”);
Serial.printin(taille); Serial.print(“valeur recue: ”); Serial.printin(maValeurRecue); Serial.printin(); }
void setup() { On initie la comm série a 115200 Bauds

Serial.begin(115200);
On démarre le Wifi en mode Station WiFi.mode(WIFI_STA); Puis on initialise ESP-NOW

if (esp_now init() != ESP OK) {
Serial.println("Erreur d'initialisation ESP-NOW");
return;

}

// Si ESP-NOW a correctement démarré, il est temps d'enregistrer la fonction
de rappel:
esp now register recv_cb(quand donnees Recues);

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/04 14:26



2026/02/04 14:26 5/5 ESP 32 NOW

}

void loop() {
}

Tester et aller plus loin

Lorsque vous regarderez les console série des deux ESP, vous constaterez que les messages sont
bien expédiés, bien recus et leur contenu correctement interprété coté récepteur. Les différentes
sources trouvées sur le net parlent d'une portée en extérieur supérieur a 200 metres, avec les deux
antennes pointant I'une vers 'autre. A tester, les essais réalisés autour de notre projet de compteur
ont plutét été concluants jusqu'a 100 métres environ.

Nous vous renvoyons aux exemples disponibles dans la bibliotheque Arduino pour aller plus loin !

From:
https://www.fablab37110.chanterie37.fr/ - Castel'Lab le Fablab MJC de Chateau-Renault

Permanent link:
https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:esp32:now&rev=1641406679

Last update: 2023/01/27 16:08

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/


https://www.fablab37110.chanterie37.fr/
https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:esp32:now&rev=1641406679

	ESP 32 NOW
	Le protocole ESP-NOW
	Principe de communication
	Côté émetteur:
	Côté récepteur:



