2026/02/03 23:44 1/4 EEPROM

EEPROM

Utiliser la mémoire EEPROM interne de I'Arduino

https://electroniqgueamateur.blogspot.com/2020/01/utiliser-la-memoire-eeprom-interne-de.html

Les cartes Arduino disposent d'une mémoire EEPROM (“Electrically-Erasable Programmable Read-Only
Memory”): il s'agit d'un endroit ou vous pouvez stocker des informations qui demeureront disponibles
méme apres que I'Arduino ait été mis hors tension pendant un certain temps, ou aprés que vous ayez
téléversé un nouveau sketch dans I'Arduino.

La mémoire EEPROM pourrait servir, par exemple, a conserver en mémoire un numéro permettant
d'identifier de facon unique une carte Arduino, les préférences de |'utilisateur, les parametres de
calibration d'un capteur, etc.

Attention, cependant, a une contrainte importante: le nombre d'écritures sur une méme adresse de la
mémoire EEPROM est limitée a environ 100 000. Ca peut sembler énorme a premiere vue, mais tout
dépend de I'utilisation que vous en faites... Si vous écrivez continuellement une nouvelle information
une fois par heure, la mémoire EEPROM devrait théoriquement pouvoir tenir le coup pendant un peu
plus de 11 ans. Mais cette durée de vie passe a environ 2 mois si I'information est réécrite une fois
par minute, et a environ une journée si l'information est mise a jour a chaque seconde! Précisons
toutefois que cette estimation de 100 000 écritures est généralement considérée comme
extrémement sévere: dans la vraie vie, I'EEPROM de votre Arduino demeurera probablement
fonctionnel beaucoup plus longtemps.

La mémoire EEPROM interne de la carte Arduino Uno est de 1 ko, ce qui signifie qu'on dispose de
1024 adresses (numérotées de 0 a 1023) pouvant chacune stocker un octet (donc un nombre situé
entre 0 et 255). La taille disponible dépend du modele de carte: elle est de 4 ko pour I'Arduino Mega,
par exemple.

La bibliotheque EEPROM

Pour écrire ou lire I'information sur la mémoire EEPROM interne de I'Arduino, nous utiliserons la
bibliotheque EEPROM. Aucune installation n'est nécessaire, puisqu'elle est présente par défaut dans
I'IDE Arduino. Il est toutefois important de déclarer cette bibliotheque au début de votre sketch:

La bibliotheque est accompagnée d'une bonne quantité d'exemples fort instructifs, que vous
trouverez dans le menu “Fichier / Exemples”.

Lire un octet: la méthode EEPROM.read()

Pour lire I'une des 1024 valeurs stockées dans I'EEPROM, on utilise la méthode EEPROM read:

EEPROM. read(adresse)

...0U 'adresse passée en parametre est un nombre situé entre 0 et 1023 (s'il s'agit d'une carte
Arduino Uno). Ainsi, pour lire la valeur enregistrée a I'adresse 55, on pourrait écrire:

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/


https://electroniqueamateur.blogspot.com/2020/01/utiliser-la-memoire-eeprom-interne-de.html

Last update:

. ino: . i id= . ino: =
2023/01/27 16:08 start:arduino:eeprom https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:eeprom&rev=1608029165

valeur = EEPROM. read(55);

A titre d'exemple, je vous suggeére de jeter un oeil sur I'exemple intitulé “EEPROM read()”, accessible
dans I'IDE Arduino par le menu “Fichier / Exemples / EEPROM” . Ce sketch affiche dans le moniteur
série la valeur stockée a chaque adresse de la mémoire EEPROM. Si rien n'a jamais été enregistré
dans votre mémoire EEPROM, chacune des adresse contient initialement la valeur 255.

Ecrire un octet: la méthode EEPROM.write()

Pour écrire une information dans I'EEPROM, on peut utiliser la méthode EEPROM.write():

EEPROM.write(adresse, valeur)

...oU “adresse” est I'adresse a laquelle nous désirons écrire I'information (c'est un nombre entre 0 et
1023 pour I'Arduino Uno), et “valeur” est I'information que nous désirons enregistrer a cet endroit (un
nombre entre 0 et 255).

Par exemple, l'instruction suivante enregistrera le nombre “23” a I'adresse numéro 4 de I'EEPROM:
EEPROM.write(4,23);

Si, apres avoir exécuté cette instruction, j'exécute a nouveau I'exemple “EEPROM read()”. je constate
que l'adresse 4 contient maintenant le nombre 23, plutot que le nombre 255 qu'il contenait
auparavant.

Vous pourriez en principe pouvoir faire tout ce que vous voulez en vous limitant a I'utilisation des
méthodes EEPROM.write() et EEPROM.read(). La bibliotheque EEPROM met toutefois a notre
disposition quelques méthodes supplémentaires, afin de nous simplifier la vie.

Ecrire un octet, mais seulement si nécessaire: la méthode EEPROM.update()

Comme je le mentionnais au tout début de cet article, le nombre total d'écritures d'une mémoire
EEPROM est limité. Il serait donc dommage de réduire inutilement la durée de vie d'une mémoire
EEPROM en y écrivant une valeur identique a celle qui s'y trouvait déja.

La méthode EEPROM.update() est donc identique a la méthode EEPROM.write(), sauf que la nouvelle
valeur sera écrite uniqguement si elle est différente de la valeur déja présente a cette adresse.

EEPROM.update(adresse, valeur)

Par exemple, l'instruction EEPROM.update(22,144) inscrira la valeur “144" a I'adresse “22", mais
seulement si la valeur déja stockée a I'adresse 22 est différente de 144.

Personnellement, je ne vois aucune raison valable de ne pas utiliser EEPROM.update() plutét
gu'EEPROM.write() chaque fois que vous désirez écrire une valeur en mémoire.

Ecrire une variable de n'importe quel type:
EEPROM. put ()

Les 3 méthodes que nous avons explorées jusqu'a maintenant impliquent I'enregistrement ou la

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/03 23:44



2026/02/03 23:44 3/4 EEPROM

lecture d'un octet: un nombre a 8 bits dont la valeur se situe entre 0 et 255.

Imaginez que vous désirez stocker en mémoire EEPROM ['état d'une entrée analogique de I'Arduino: il
s'agit d'une valeur a 10 bits pouvant aller de 0 a 1023, ce qui est trop grand pour étre exprimé par un
seul octet.

Pour contourner ce probleme, vous pourriez diviser votre mesure par 4 avant de la stocker en
mémoire (ce qui aurait pour effet négatif de diminuer la résolution de votre mesure), ou encore
utiliser les opérateurs bit a bit pour séparer manuellement le nombre a 10 bits en deux octets
différents.

Mais rien de tout ca ne sera nécessaire si vous utilisez la méthode EEPROM.put(), spécialement
congue pour stocker facilement une variable de n'importe quel type (int, long, float, etc.) ou méme
une structure (struct) constituée de plusieurs types différents.

La syntaxe est similaire a celle d'EEPROM.write():
EEPROM.put(adresse, valeur)

Dans I'exemple ci-dessous, j'enregistre une variable de type “long” contenant le nombre 123456789
a I'adresse 4 de I'EEPROM:

Lire une variable de n'importe quel type: la méthode EEPROM.get()

Le complément de la méthode EEPROM.put() est EEPROM.get(), qui nous permet de lire sur I'EEPROM
la valeur d'une variable de n'importe quel type.

La syntaxe est:
EEPROM.get (adresse, valeur)

Par exemple, dans le sketch ci-dessous, je récupere la valeur de la variable de type “long”
précédemment enregistrée a I'adresse 4, et je I'affiche dans le moniteur série.

Lors de I'exécution de ce sketch, le moniteur série a affiché 123456789, puisque j'avais
précédemment enregistré cette valeur grace a la méthode EEPROM.put().

Mais attention! Puisque tout a été fait de facon automatique par les méthodes EEPROM.put() et
EEPROM.get(), il serait dangereux d'oublier que notre variable de type “long” est un nombre a 32 bits.
Elle ne peut donc pas avoir été enregistré uniqguement a I'adresse 4, qui ne peut contenir que 8 bits.

Pour en avoir le coeur net, j'utilise encore une fois I'exemple EEPROM _read, fourni avec I'IDE Arduino,
qui présente dans le moniteur série le contenu de toutes les adresses:

Comme vous pouvez le constater, lorsque j'ai demandé de stocker la variable de type long a l'adresse
4 par la méthode EEPROM.put(), 4 octets ont été modifiés: ceux situés aux adresses 4, 5, 6 et 7.

L'adresse 4 contient le nombre décimal 21, ou 00010101 en binaire. L'adresse 5 contient le nombre
décimal 205, soit 11001101 en binaire. L'adresse 6 contient le nombre décimal 91, ou 01011011 en
binaire. L'adresse 7 contient le nombre décimal 7, soit 00000111 en binaire.

En mettant ces 4 octets bout a bout pour obtenir un nombre a 32 bits, en commencant par I'adresse 7
et en terminant par I'adresse 4, nous obtenons: 00000111010110111100110100010101 , qui

Castel'Lab le Fablab MJC de Chateau-Renault - https://www.fablab37110.chanterie37.fr/



Last update:

. ino: . i id= . ino: =
2023/01/27 16:08 start:arduino:eeprom https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:eeprom&rev=1608029165

correspond a la valeur décimale 123456789.

[l aurait donc été catastrophique, apres avoir stocké notre variable a I'adresse 4, d'en enregistrer une
autre a I'adresse 5, en oubliant que cette adresse est déja occupée!

Utiliser 'EEPROM comme un tableau d'octets: I'objet EEPROM[]

Un objet EEPROM[] vous permet d'écrire et lire des octets comme si la mémoire EEPROM était un
tableau d'octets.

Ainsi, I'expression “valeur = EEPROM[5]"” aura le méme effet que I'expression “valeur =
EEPROM.read(5)",

et I'expression “EEPROM[7] = 123" aura le méme effet que I'expression “EEPROM.update(7, 123)".

Connaitre la taille de I'EEPROM grace a
EEPROM. length()
Tel que précisé un peu plus haut, la taille de la mémoire EEPROM n'est pas la méme pour tous les

modeles d'Arduino. La méthode EEPROM.length() retourne cette taille (en octets), ce qui permet a
votre sketch d'utiliser la totalité de la mémoire disponible, peu importe le modéle de carte utilisé.

Liens web

EEPROM sur Locoduino

From:
https://www.fablab37110.chanterie37.fr/ - Castel'Lab le Fablab MJC de Chateau-Renault

Permanent link: i, =
https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:eeprom&rev=1608029165 \:

Last update: 2023/01/27 16:08

https://www.fablab37110.chanterie37.fr/ Printed on 2026/02/03 23:44


https://www.locoduino.org/spip.php?article72
https://www.fablab37110.chanterie37.fr/
https://www.fablab37110.chanterie37.fr/doku.php?id=start:arduino:eeprom&rev=1608029165

	EEPROM
	Utiliser la mémoire EEPROM interne de l'Arduino
	La bibliothèque EEPROM


	Liens web

